Skip to main content
Log in

Persistence stability for geometric complexes

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we study the properties of the homology of different geometric filtered complexes (such as Vietoris–Rips, Čech and witness complexes) built on top of totally bounded metric spaces. Using recent developments in the theory of topological persistence, we provide simple and natural proofs of the stability of the persistent homology of such complexes with respect to the Gromov–Hausdorff distance. We also exhibit a few noteworthy properties of the homology of the Rips and Čech complexes built on top of compact spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. All vector spaces are taken to be over an arbitrary field \(\mathbf {k}\), fixed throughout this paper.

  2. We use simplicial homology with coefficients in the field \(\mathbf {k}\).

  3. We will usually drop the word ‘intrinsic’ unless we are contrasting it with ‘ambient’.

  4. See [13] chap.1, def 1.2 for a definition of the length of a curve in a metric space.

References

  1. Attali, D., Lieutier, A., Salinas, D.: Vietoris–Rips complexes also provide topologically correct reconstructions of sampled shapes. In: Proceedings of the 27th Annual ACM Symposium on Computational geometry, SoCG ’11, pp. 491–500. ACM, New York, NY, USA (2011). doi:10.1145/1998196.1998276

  2. Bartholdi, L., Schick, T., Smale, N., Smale, S., Baker, A.W.: Hodge theory on metric spaces. Found. Comput. Math. 12(1), 1–48 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  4. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L., Oudot, S.: Proximity of persistence modules and their diagrams. In: SCG, pp. 237–246 (2009). doi:10.1145/1542362.1542407

  5. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov–Hausdorff stable signatures for shapes using persistence. Computer Graphics Forum (Proceedings of the SGP 2009) pp. 1393–1403 (2009)

  6. Chazal, F., Oudot, S.Y.: Towards persistence-based reconstruction in euclidean spaces. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, SCG ’08, pp. 232–241. ACM, New York, NY, USA (2008). doi:10.1145/1377676.1377719

  7. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The structure and stability of persistence modules (2012). ArXiv:1207.3674 [math.AT]

  8. Dowker, C.H.: Homology groups of relations. Ann. Math. 56(1), 84–95 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  9. Droz, J.M.: A subset of Euclidean space with large Vietoris–Rips homology (2012). ArXiv:1210.4097 [math.GT]

  10. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  11. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ghys, E., de la Harpe, P.: Sur les groupes hyperboliques d’après Mikhael Gromov, vol. 83. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  13. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, 2nd edn. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  14. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge, MA (2001). http://www.math.cornell.edu/~hatcher/

  15. Hausmann, J.C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. Ann. Math. Stud. 138, 175–188 (1995)

    MathSciNet  Google Scholar 

  16. Latschev, J.: Vietoris–Rips complexes of metric spaces near a closed Riemannian manifold. Archiv der Mathematik 77(6), 522–528 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Munkres, J.R.: Elements of Algebraic Topology. Westview Press, Boulder, CO (1984)

    MATH  Google Scholar 

  18. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Steve Smale for fruitful discussions that motivated the results Sect. 5.2, and to J.-M. Droz for suggesting the idea of the proof of Proposition 5.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vin de Silva.

Additional information

The authors gratefully acknowledge the following funding sources for this work: Digiteo project C3TTA (including the Digiteo chair held by the second author); European project CG-Learning (EC contract No. 255827); ANR project GIGA (ANR-09-BLAN-0331-01); DARPA project Sensor Topology and Minimal Planning ‘SToMP’ (HR0011-07-1-0002). The second author is a 2013 Simons Fellow, and is supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazal, F., de Silva, V. & Oudot, S. Persistence stability for geometric complexes. Geom Dedicata 173, 193–214 (2014). https://doi.org/10.1007/s10711-013-9937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-013-9937-z

Keywords

Mathematics Subject Classification (2000)

Navigation