Skip to main content
Log in

Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Microorganisms participate in a variety of geologic processes that alter the chemical and physical properties of their environment. Understanding the geophysical signatures of microbial activity in the environment has resulted in the development of a new sub-discipline in geophysics called “biogeophysics”. This review focuses primarily on literature pertaining to biogeophysical signatures of sites contaminated by light non-aqueous phase liquids (LNAPL), as these sites provide ideal laboratories for investigating microbial-geophysical relationships. We discuss the spatial distribution and partitioning of LNAPL into different phases because the physical, chemical, and biological alteration of LNAPL and the subsequent impact to the contaminated environment is in large part due to its distribution. We examine the geophysical responses at contaminated sites over short time frames of weeks to several years when the alteration of the LNAPL by microbial activity has not occurred to a significant extent, and over the long-term of several years to decades, when significant microbial degradation of the LNAPL has occurred. A review of the literature suggests that microbial processes profoundly alter the contaminated environment causing marked changes in the petrophysical properties, mineralogy, solute concentration of pore fluids, and temperature. A variety of geophysical techniques such as electrical resistivity, induced polarization, electromagnetic induction, ground penetrating radar, and self potential are capable of defining the contaminated zones because of the new physical properties imparted by microbial processes. The changes in the physical properties of the contaminated environment vary spatially because microbial processes are controlled by the spatial distribution of the contaminant. Geophysical studies must consider the spatial variations in the physical properties during survey design, data analysis, and interpretation. Geophysical data interpretation from surveys conducted at LNAPL-contaminated sites without a microbial and geochemical context may lead to ambiguous conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdel Aal G, Atekwana EA, Slater LD (2004) Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophys Res Lett 31:L12505

    Article  Google Scholar 

  • Abdel Aal GZ, Slater LD, Atekwana EA (2006) Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics 71:H13–H24

    Article  Google Scholar 

  • Abdel Aal G, Atekwana E, Radzikowski S, Rossbach S (2009) Effect of bacterial adsortion on low frequency electrical properties of clean quartz sands and iron-oxide coated sands. Geophys Res Lett 36:L04403. doi:10.1029/2008GL036196

    Article  Google Scholar 

  • Allen JP, Atekwana EA, Atekwana EA, Duris JW, Werkema DD, Rossbach S (2007) The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl Environ Microbiol 73:2860–2870

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Petrol Eng 146:54–61

    Google Scholar 

  • Atekwana EA, Sauck WA, Werkema DD (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44:167–180

    Article  Google Scholar 

  • Atekwana EA, Sauck WA, Abdel Aal GZ, Werkema DD (2002) Geophysical investigation of vadose zone conductivity anomalies at a hydrocarbon contaminated site: implications for the assessment of intrinsic bioremediation. J Environ Eng Geophys 7:103–110

    Article  Google Scholar 

  • Atekwana EA, Atekwana EA, Werkema DD, Duris JW, Rossbach S, Sauck WA, Cassidy DP, Means J, Legall FD (2004a) In situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site. Geophysics 69:56–63

    Article  Google Scholar 

  • Atekwana EA, Atekwana EA, Rowe RS, Werkema DD, Legall FD (2004b) The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J Appl Geophys 56:281–294

    Article  Google Scholar 

  • Atekwana EA, Atekwana E, Legall FD, Krishnamurthy RV (2004c) Field evidence for geophysical detection of subsurface zones of enhanced microbial activity. Geophys Res Lett 31:L23603

    Article  Google Scholar 

  • Atekwana EA, Atekwana EA, Werkema DD, Allen JP, Smart LA, Duris JW, Cassidy DP, Sauck WA, Rossbach S (2004d) Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. Geophys Res Lett 31:L23501

    Article  Google Scholar 

  • Atekwana EA, Atekwana EA, Legall FD, Krishnamurthy RV (2005) Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. J Contam Hydrol 80:149–167

    Article  Google Scholar 

  • Atekwana EA, Werkema DD, Atekwana EA (2006) Biogeophysics: the effects of microbial processes on geophysical properties of the shallow subsurface. Appl Hydrogeophys 71:161–193

    Article  Google Scholar 

  • Benson AK, Stubben MA (1995) Interval resistivities and very low frequency electromagnetic induction—an aid to detecting groundwater contamination in space and time; a case study. Environ Geosci 2:74–84

    Google Scholar 

  • Benson AK, Payne KL, Stubben MA (1997) Mapping groundwater contamination using dc resistivity and VLF geophysical methods—a case study. Geophysics 62:80–86

    Article  Google Scholar 

  • Bermejo JL, Sauck WA, Atekwana EA (1997) Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB, Oscoda, Michigan. Ground Water Monit Remed 17:131–137

    Article  Google Scholar 

  • Bigalke J, Grabner EW (1997) The geobattery model: a contribution to large scale electrochemistry. Electrochim Acta 42:3443–3452

    Article  Google Scholar 

  • Börner FD, Schön JH (1991) A relation between the quadrature component of electrical conductivity and specific surface area. The Log Analyst 32:612–613

    Google Scholar 

  • Bradford JH (2007) Frequency-dependent attenuation analysis of ground-penetrating radar data. Geophysics 72:J7–J16. doi:10.1190/1.2710183

    Article  Google Scholar 

  • Brovelli A, Malaguerra F, Barry DA (2009) Bioclogging in porous media: model development and sensitivity to initial conditions. Environ Model Softw 24:611–626

    Article  Google Scholar 

  • Cagniard L (1953) Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 18(605):605–635

    Article  Google Scholar 

  • Campbell DL, Lucius JE, Ellefsen KJ, Deszcz-Pan M (1996) Monitoring of a controlled LNAPL spill using ground penetrating radar. In: Proceedings of the symposium on the application of geophysics to engineering and environmental problems (SAGEEP), Keystone, CO, pp 511–517

  • Carlut J, Horen H, Janots D (2007) Impact of micro-organisms activity on the natural remanent magnetization of the young oceanic crust. Earth Planet Sci Lett 253:497–506

    Article  Google Scholar 

  • Cassidy NJ (2007) Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies. J Contam Hydrol 94:49–75

    Article  Google Scholar 

  • Cassidy NJ (2008) GPR attenuation and scattering in a mature hydrocarbon spill: a modeling study. Vadose Zone J 7:140–159

    Article  Google Scholar 

  • Cassidy DP, Werkema DD, Sauck WA, Atekwana EA, Rossbach S, Duris JW (2001) The effects of LNAPL biodegradation products on electrical conductivity measurements. J Environ Eng Geophys 6:47–52

    Article  Google Scholar 

  • Chapelle FH, Bradley PM (1997) Alteration of aquifer geochemistry by microorganisms. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington DC, pp 558–564

  • Chapelle FH, Haack SK, Adriaens P, Henry MA, Bradley PM (1996) Comparison of E(h) and H-2 measurements for delineating redox processes in a contaminated aquifer. Environ Sci Technol 30:3565–3569

    Article  Google Scholar 

  • Che-Alota V, Atekwana EA, Atekwana EA, Sauck WA, Werkema DD (2009) Temporal geophysical signatures due to contaminant mass reduction. Geophysics 74. doi: 10.1190/1.3139769

  • Corwin RF (1990) The self-potential method for environmental and engineering applications: In: Ward SH (ed) Geotechnical and environmental geophysics, vol 1. Review and tutorial. SEG, Tulsa, pp 127–146

  • Daniels JJ, Roberts R, Vendl M (1995) Ground-penetrating radar for the detection of liquid contaminants. J Appl Geophys 33:195–207

    Google Scholar 

  • Davis CA (2009) Investigating the impact of microbial interactions with geologic media on geophysical properties. Unpublished dissertation, Missouri University of Science and Technology

  • Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551

    Article  Google Scholar 

  • Davis CA, Atekwana E, Atekwana E, Slater LD, Rossbach S, Mormile MR (2006) Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys Res Lett 33:L18403

    Article  Google Scholar 

  • DeRyck SM, Redman JD, Annan AP (1993) Geophysical monitoring of controlled kerosene spill. In: Proceedings of the symposium on the application of geophysics to engineering and environmental problems (SAGEEP), San Diego, pp 5–19

  • Endres AL, Redman J (1996) Modeling the electrical properties of porous rocks and soils containing immiscible contaminants. J Environ Eng Geophys 0:105–112

    Article  Google Scholar 

  • Eweis JB, Schroeder ED, Chang DPY, Scow KM (1998) Biodegradation of MTBE in a pilot-scale biofilter. In: Wickramanayake GB, Hinchee RE (eds) Natural attenuation: chlorinated and recalcitrant compounds. Battelle Press, Columbus, pp 341–346

    Google Scholar 

  • Frohlich RK, Barosh PJ, Boving T (2008) Investigating changes of electrical characteristics of the saturated zone affected by hazardous organic waste. J Appl Geophys 64:25–36

    Article  Google Scholar 

  • Haack SK, Bekins BA (2000) Microbial populations in contaminant plumes. Hydrogeol J 8:63–76

    Article  Google Scholar 

  • Hubbard SS, Williams K, Conrad ME, Faybishenko B, Peterson JS, Chen J, Long P, Hazen T (2008) Geophysical monitoring of hydrological and biogeochemical transformations associated with Cr(VI) biostimulation. Environ Sci Technol 42:3757–3765. doi:10.1021/es071702s

    Article  Google Scholar 

  • Huling SG, Pivetz B, Stransky R (2002) Terminal electron acceptor mass balance: light nonaqueous phase liquids and natural attenuation. J Environ Eng 128:246–252

    Article  Google Scholar 

  • Knight R (2001) Ground penetrating radar for environmental applications. Annu Rev Earth Planet Sci 29:229–255

    Article  Google Scholar 

  • Lee JY, Cheon JY, Lee KK, Lee SY, Lee MH (2001) Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer. J Contam Hydrol 50:139–158

    Article  Google Scholar 

  • Lesmes DP, Frye KM (2001) Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone. J Geophys Res Solid Earth 106:4079–4090

    Article  Google Scholar 

  • Lien BK, Enfield CG (1998) Delineation of subsurface hydrocarbon contaminated distribution using a direct push resistivity method. J Environ Eng Geophys 2–3:173–179

    Google Scholar 

  • Linde N, Revil A (2007) Inverting self-potential data for redox potentials of contaminant plumes. Geophys Res Lett 34:L14302. doi:10.1029/2007GL030084

    Article  Google Scholar 

  • Lopes de Castro D, Branco RMGC (2003) 4-D ground penetrating radar monitoring of a hydrocarbon leakage site in Fortaleza (Brazil) during its remediation process: a case history. J Appl Geophys 54:127–144

    Article  Google Scholar 

  • Lucius J, Olhoeft GR, Hill PL, Duke SK (1992) Properties and hazards of 108 selected substances, 1992 edn. United Staes geological survey open file report 92-527, 560 pp

  • Marcak H, Golebiowski T (2008) Changes of GPR spectra due to the presence of hydrocarbon contamination in the ground. Acta Geophys 56:485–504

    Article  Google Scholar 

  • Mazác O, Benes L, Landa I, Maskova A (1990) Determination of the extent of oil contamination in groundwater by geoelectrical methods. In: Ward SH (ed) Geotechnical and environmental geophysics, vol 2. pp 107–112

  • McGuire JT, Smith EW, Long DT, Hyndman DW, Haack SK, Klug MJ, Velbel MA (2000) Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents. Chem Geol 169:471–485

    Article  Google Scholar 

  • McNeill JD (1990) Use of electromagnetic methods for groundwater studies. In: Ward SH (ed) Geotechnical and environmental geophysics. SEG, IG#5, pp 191–218

  • Naudet V, Revil A (2005) A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys Res Lett 32:L11405. doi:10.1029/2005GL022735

    Article  Google Scholar 

  • Naudet V, Revil A, Bottero JY, Begassat P (2003) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30:2091. doi:10.1029/2003GL018096

    Article  Google Scholar 

  • Ntarlagiannis D, Ferguson A (2009) SIP response of artificial biofilms. Geophysics 74:A1–A5

    Article  Google Scholar 

  • Ntarlagiannis D, Williams KH, Slater L, Hubbard S (2005a) Low-frequency electrical response to microbial induced sulfide precipitation. J Geophys Res Biogeosci 110:L24402

    Google Scholar 

  • Ntarlagiannis D, Yee N, Slater L (2005b) On the low-frequency electrical polarization of bacterial cells in sands. Geophys Res Lett 32:L24402

    Article  Google Scholar 

  • Ntarlagiannis D, Atekwana EA, Hill EA, Gorby Y (2007) Microbial nanowires: is the subsurface “hardwired”? Geophys Res Lett 34:L17305

    Article  Google Scholar 

  • Nyquist JE, Corry CE (2002) Self-potential: the ugly duckling of environmental geophysics. Lead Edge 21:446–451

    Article  Google Scholar 

  • Olhoeft GR (1985) Low frequency electrical properties. Geophysics 50:2492–2503

    Article  Google Scholar 

  • Osella A, de la Vega M, Lascano E (2002) Characterization of a contaminant plume due to a hydrocarbon spill using geoelectrical methods. J Environ Eng Geophys 7:78–87

    Article  Google Scholar 

  • Personna YR, Ntarlagiannis D, Slater L, Yee N, O’Brien M, Hubbard S (2008) Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. J Geophys Res Biogeosci 113:G02020

    Article  Google Scholar 

  • Petterssen JK, Nobes DC (2003) Environmental geophysics at Scott Base: ground penetrating radar and electromagnetic induction as tools for mapping contaminated ground at Antarctic research bases. Cold Reg Sci Technol 37:187–195

    Article  Google Scholar 

  • Poortinga AT, Bos R, Norde W, Busscher HJ (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47:1–32

    Article  Google Scholar 

  • Revil A, Glover PWJ (1998) Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophys Res Lett 25:691–694

    Article  Google Scholar 

  • Rizzo E, Suski B, Revil A, Straface S, Troisi S (2004) Self-potential signals associated with pumping-tests experiments. J Geophys Res 109:B10203. doi:10.1029/2004JB003049

    Article  Google Scholar 

  • Sato M, Mooney HM (1960) The electrochemical mechanism of sulfide self potential. Geophysics 25:226–249

    Article  Google Scholar 

  • Sauck WA (2000) A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. J Appl Geophys 44:151–165

    Article  Google Scholar 

  • Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2:203–212

    Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  Google Scholar 

  • Schön JH (1996) Handbook of geophysical exploration, volume 18, physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Pergamon

    Google Scholar 

  • Sivenas P, Beales FW (1982) Natural geobatteries associated with sulphide ore deposits, I. Theoretical studies. J Geochem Explor 17:123–143

    Article  Google Scholar 

  • Skubal KL, Barcelona MJ, Adriaens P (2001) An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect. J Contam Hydrol 49:151–169

    Article  Google Scholar 

  • Slater LD, Glaser DR (2003) Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization. Geophysics 68:1547–1558

    Article  Google Scholar 

  • Slater LD, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67:77–88

    Article  Google Scholar 

  • Slater L, Ntarlagiannis D, Personna YR, Hubbard S (2007) Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophys Res Lett 34:L21404

    Article  Google Scholar 

  • Sogade JA, Scira-Scappuzzo F, Vichabian Y, Shi WQ, Rodi W, Lesmes DP, Morgan FD (2006) Induced-polarization detection and mapping of contaminant plumes. Geophysics 71:B75–B84

    Article  Google Scholar 

  • Stoll J, Bigalke J, Grabner EW (1995) Electrochemical modeling of self-potential anomalies. Surv Geophys 16:107–120

    Article  Google Scholar 

  • Tezkan B, Georgescu P, Fauzi U (2005) A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania. Geophys Prospect 53:311–323

    Article  Google Scholar 

  • Vandevivere P, Baveye P (1992) Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns. Appl Environ Microbiol 58:1690–1698

    Google Scholar 

  • Vroblesky DA, Chapelle FH (1994) Temporal and spatial changes of terminal electron-accepting processess in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation. Water Resour Res 30:1561–1570

    Article  Google Scholar 

  • Waxman MH, Smits LJM (1968) Electrical conductivities in oil-baring shaly sands. Soc Petrol Eng J 8:107–122

    Google Scholar 

  • Werkema DD, Atekwana EA, Endres AL, Sauck WA, Cassidy DP (2003) Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation. Geophys Res Lett 30:1647. doi:10.1029/2003GL017346

    Article  Google Scholar 

  • Williams KH, Ntarlagiannis D, Slater LD, Dohnalkova A, Hubbard SS, Banfield JF (2005) Geophysical imaging of stimulated microbial biomineralization. Environ Sci Technol 39:7592–7600

    Article  Google Scholar 

  • Williams KH, Hubbard SS, Banfield JF (2007) Galvanic interpretation of self-potential signals associated with microbial sulfate-reduction. J Geophys Res Biogeosci 112:G03019

    Article  Google Scholar 

  • Yang CH, Yu CY, Su SW (2007) High resistivities associated with a newly formed LNAPL plume imaged by geoelectric techniques—a case study. J Chin Inst Eng 30:53–62

    Google Scholar 

Download references

Acknowledgments

We acknowledge the many collaborators (A. Endres, S. Rossbach, W. Sauck, L. Slater) and former students (G. Abdel Aal, J. Allen, V. Che-Alota, C. Davis, J. Duris, F. Legall, D. Werkema) who helped shape the ideas discussed in this review article. We also acknowledge the different funding agencies (the US National Science Foundation, the Petroleum Research Fund of the American Chemical Scociety, and the US Environmental Protection Agency) for financial support that helped develop biogeophysics. V. Che-Alota helped with the literature review and C. Davis provided Fig. 6. Critical reviews from two anonymous reviewers helped to improve this manusucript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estella A. Atekwana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atekwana, E.A., Atekwana, E.A. Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review. Surv Geophys 31, 247–283 (2010). https://doi.org/10.1007/s10712-009-9089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-009-9089-8

Keywords

Navigation