Skip to main content

Advertisement

Log in

Space Weather: Physics, Effects and Predictability

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The time varying conditions in the near-Earth space environment that may affect space-borne or ground-based technological systems and may endanger human health or life are referred to as space weather. Space weather effects arise from the dynamic and highly variable conditions in the geospace environment starting from explosive events on the Sun (solar flares), Coronal Mass Ejections near the Sun in the interplanetary medium, and various energetic effects in the magnetosphere–ionosphere–atmosphere system. As the utilization of space has become part of our everyday lives, and as our lives have become increasingly dependent on technological systems vulnerable to the space weather influences, the understanding and prediction of hazards posed by these active solar events have grown in importance. In this paper, we review the processes of the Sun–Earth interactions, the dynamic conditions within the magnetosphere, and the predictability of space weather effects on radio waves, satellites and ground-based technological systems today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abel B, Thorne RM (1998) Electron scattering loss in Earth’s inner magnetosphere 1: dominant physical processes. J Geophys Res 103:2385–2395

    Google Scholar 

  • Afraimovich EL, Zherebtsov GA, Smolkov GYA (2007) Total failure of GPS during a solar flare on December 6 2006. Dokl Earth Sci 417:1231. doi:10.1134/S1028334X07080223

    Google Scholar 

  • Afraimovich EL, Demyanov VV, Ishin AB, Smolkov GYA (2008) Powerful solar radio burst as a global and free tool for testing satellite broadband radio systems, including GPS-GLONASS-GALILEO. J Atmos Solar Terr Phys 70:1985–1994. doi:10.1016/j.jastp.2008.09.008

    Google Scholar 

  • Akasofu SI (1968) Polar and magnetospheric substorms. D. Reidel, Dordrecht, p 280

    Google Scholar 

  • Akasofu SI (1981) Energy coupling between the solar wind and the magnetosphere. Space Sci Rev 28:121–190

    Google Scholar 

  • Akasofu SI (2007) Long-standing unsolved problems in solar terrestrial physics. IEEE Trans Plasma Sci 35:751–758

    Google Scholar 

  • Akasofu SI, Fry CF (1986) A first generation numerical geomagnetic storm prediction scheme. Planet Space Sci 34:77–79. doi:10.1016/0032-0633(86)90105-4

    Google Scholar 

  • Albert JM (2003) Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J Geophys Res 108:1249. doi:10.1029/2002JA009792

    Google Scholar 

  • Albertson VD, Thorson JM Jr, Miske SA Jr (1974) The effects of geomagnetic storms on electrical power systems. IEEE Trans Power Apparatus Syst PAS-93(4):1031–1044

    Google Scholar 

  • Allen J, Wilkinson D (1993) Solar-terrestrial activity affecting systems in space and on earth, solar-terrestrial predictions IV. In: Proceedings of a workshop at Ottawa, Canada, 18–22 May, 1992, vol 1. Published by NOAA Environment Research Laboratory, Boulder, p 75

  • Alves MV, Echer E, Gonzalez WD (2006) Geoeffectiveness of corotating interaction regions as measured by D st index. J Geophys Res 111:A07S05. doi:10.1029/2005JA011379

    Google Scholar 

  • Amari T, Luciani JF, Aly JJ (2004) Coronal magnetohydrodynamic evolution driven by subphotospheric conditions. Astrophys J 615:L165–L168

    Google Scholar 

  • Amsler C et al (2008) Review of particle physics: gauge and higgs bosons. Phys Lett B 667:1

    Google Scholar 

  • Anderson CW, Lanzerotti LJ, Maclennan CG (1974) Outage of the L-4 system and geomagnetic disturbances on August 4, 1972. Bell Syst Tech J 53:1817

    Google Scholar 

  • Antonova AE, Gubar YuI, Kropotlin AP (2000) Energetic particle population in the high-latitude geomagnetosphere. Phys Chem Earth (C) 25:47–50

    Google Scholar 

  • Aschwanden MJ (2004) Physics of the solar corona. Springer, Berlin

    Google Scholar 

  • Avakyan SV (2008) The physics of Sun–Earth coupling: results, problems, and new approaches. Geomagn Aeron 48:4

    Google Scholar 

  • Axford WI, Hines CO (1961) A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can J Phys 39:1433

    Google Scholar 

  • Bailey GJ, Denton MH, Heelis RA, Venkatraman S (2000) A modeling study of the latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum. Ann Geophys 18:1435–1446. doi:10.1007/s00585-000-1435-6

    Google Scholar 

  • Baker DN (1998) What is space weather? Adv Space Res 23:1–7

    Google Scholar 

  • Baker DN (2009) What does space weather cost modern societies? Space Weather 7:S02003. doi:10.1029/2009SW000465

    Google Scholar 

  • Baker DN, Blake JB, Gorney DJ, Higbie PR, Klebesadel RW, King JH (1987) Highly relativistic magnetospheric electrons: a role in coupling to the middle atmosphere? Geophys Res Lett 14:1027

    Google Scholar 

  • Baker DN, Pulkkinen TI, Angelopoulos V, Baumjohann W, McPherron RL (1996) The neutral line model of substorms: past results and present view. J Geophys Res 101:12975

    Google Scholar 

  • Baker DN, Kanekal SG, Li X, Monk SP, Goldstein J, Burch JL (2004) An extreme distortion of the Van Allen Belt arising from the ‘halloween’ solar storm in 2003. Nature 432:878–881

    Google Scholar 

  • Baker DN, Barby LA, Curtis S, Jokipii JR, Lewis WS, Miller J, Schimmerling W, Singer HJ, Townsend LW, Turner RE, Zurbuchen TH (2006) Space radiation hazard and the vision for space exploration: report of a workshop. The National Academy Press, Washington

    Google Scholar 

  • Baker DN, Wiltberger MJ, Weigel RS, Elkington SR (2007) Present status and future challenges of modeling the Sun–Earth end-to-end system. J Atmos Solar Terr Phys 69:3–17

    Google Scholar 

  • Balasubrahmanyan VK, Serlemitsos AT (1974) Solar energetic particle event with He-3/He-4 greater than 1. Nature 252:460–462

    Google Scholar 

  • Balogh A, Lanzerotti LJ, Suess ST (2008) The heliosphere through the solar activity cycle. Springer, Berlin

    Google Scholar 

  • Balsiger H, Eberhardt P, Geiss J, Young DT (1980) Magnetic storm injection of 0.9–16 keV/e solar and terrestrial ions into the high altitude magnetosphere. J Geophys Res 85:1649

    Google Scholar 

  • Barbieri LP, Mahmot RE (2004) October–November 2003’s space weather and operations lessons learned. Space Weather 2:S09002. doi:10.1029/2004SW000064

    Google Scholar 

  • Barlow WH (1849) On the spontaneous electrical currents observed in wires of the electrical telegraph. Phil Trans R Soc Lond 139:61

    Google Scholar 

  • Barnes G, Leka KD, Schumer EA, Della-Rose DJ (2007) Probabilistic forecasting of solar flares from vector magnetogram data. Space Weather 5:S09002. doi:10.1029/2007SW000317

    Google Scholar 

  • Barron WR, Cliver EW, Cronin JP, Guidice DA (1985) Solar radio emission. In: Jura AS (ed) Handbook of geophysics and the space environment, Chap. 11, AFGL, USAF

  • Bastian TS, Benz AO, Gary DE (1998) Radio emission from solar flares. Ann Rev Astron Astrophys 36:131

    Google Scholar 

  • Bastian TS, Pick M, Kerdraon A, Maia D, Vourlidas A (2001) The coronal mass ejection of 1998 April 20: direct imaging at radio wavelengths. Astrophys J 558:65–69

    Google Scholar 

  • Baumjohann W, Pellinen RJ, Opgenoorth HJ, Nielsen E (1981) Joint two dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents: current systems associated with the local break-ups. Planet Space Sci 29:431–447

    Google Scholar 

  • Bertaux JL, Le Texier H, Goutail F, Lallement R, Kockarts G (1989) Lyman alpha observations of geocoronal and interplanetary hydrogen from Spacelab-1: exospheric temperature and density and hot emission. Ann Geophys 7:549–564

    Google Scholar 

  • Bieber JW, Evenson P, Dröge W, Pyle R, Ruffolo D, Rujiwarodom M, Tooprakai P (2004) Spaceship Earth observations of the Easter 2001 solar particle event. Astrophys J 601:L103–L106

    Google Scholar 

  • Bieber JW, Clem J, Evenson P, Pyle R, Ruffolo D, Saiz A (2005) Relativistic solar neutrons and protons on 28 October 2003. Geophys Res Lett 32:L03S02

    Google Scholar 

  • Biermann L, Haxel O, Schlüter A (1951) Neutrale ultrastrahlungen von der Sonne, Zs. Naturforschung, 6a:47

  • Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36:261–275

    Google Scholar 

  • Blais G, Metsa P (1993) Operating the hydro-Quebec grid under magnetic storm conditions since the storm of 13 March, 1989, in solar-terrestrial prediction IV. In: Hruska J, Shea MA, Smart DF, Heckman G (eds) Proceedings of a workshop at Ottawa, Canada, May 18–20, 1992, NOAA

  • Blake B (1999) Comment on ‘cusp: a new acceleration region of the magnetosphere’, by J Chen et al. Czech J Phys 49:675

    Google Scholar 

  • Blake JB, Kolasinski WA, Fillius RW, Mullen EG (1992) Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991. Geophys Res Lett 19:821–824

    Google Scholar 

  • Blanc M, Horwitz JL, Blake JB, Daglis IA, Lemaire JF, Moldwin MB, Orsini S, Thorne RM, Wolfe RA (1999) Source and loss processes in the inner magnetosphere. In: Hultqvist B, Øieroset M, Paschmann G, Treumann R (eds) Magnetospheric plasma sources and losses, Space Science Series of the International Space Science Institute, vol 6. Kluwer, Dordrecht, pp 137–206

    Google Scholar 

  • Bolduc L, Langlois P, Boteler D, Pirjola R (1998) A study of geoelectromagnetic disturbances in Québec, 1. General results. IEEE Trans Power Deliv 13:1251

    Google Scholar 

  • Borovsky JE, Denton MH (2006) Differences between CME-driven storms and CIR-driven storms. J Geophys Res 111:A07S08. doi:10.1029/2005JA011447

    Google Scholar 

  • Borovsky JE, Denton MH (2009) Relativistic electron dropouts and recovery: a superposed epoch study of the magnetosphere and the solar wind. J Geophys Res 114:A02201. doi:10.1029/2008-A013128

    Google Scholar 

  • Boscher D, Bougeret JL, Breton J, Lantos P, Prado JY, Romero M (1998) Météorologie de l’environnement spatial : rapport final du groupe d’évaluation des besoins”, RF CNES/DP/CM 98-252, octobre 1998. (English version provided by ESA)

  • Boteler DH (2003) Geomagnetic hazards to conducting networks. Nat Hazards 28:537–561

    Google Scholar 

  • Boteler DH, Pirjola RJ, Nevanlinna H (1998) The effects of geomagnetic disturbances on electrical systems at the earth’s surface. Adv Space Res 26:17–27

    Google Scholar 

  • Bothmer V, Daglis IA (eds) (2007) Space weather: physics and effects. Springer, Dordrecht

    Google Scholar 

  • Bothmer V, Rust DM (1997) The field configuration of magnetic clouds and the solar cycle. In: Crooker N, Joselyn JA, Feynman J (eds) Coronal mass ejections, vol 99 of Geophysical Monograph, pp 137–146. American Geophysical Union, Washington

  • Bothmer V, Schwenn R (1998) The structure and origin of magnetic clouds in the solar wind. Ann Geophys 16:1–24

    Google Scholar 

  • Bothmer V, Zhukov A (2006) The Sun as the prime source of space weather. In: Bothmer V, Daglis Y (eds) Space weather-physics and effects. Springer/Praxis, Berlin, pp 31–102 2006

    Google Scholar 

  • Bourdarie S, Bourrieau J (1999) Evaluation des taux d’événements singuliers induits par les protons piégés—Tirs AR5—XMM, CELESTRI et GTO+, RF/473900 ONERA/DESP, 1999

  • Bourrieau J, David JP, Levy L (1996) Environnement spatial, Notes de cours”, SUPAERO course

  • Brückner GE (1974) The Behaviour of the outer solar corona (3R to 10 R during a large solar flare observed from OSO-7 in White Light. In: Newkirk G Jr (ed) Coronal disturbances IAU Symposium no. 57, held at Surfers Paradise, Queensland, 7–11 Sep 1973, pp 333–334. Reidel, Dordrecht

  • Brückner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Moses JD, Socker DG, Dere KP, Lamy PL, Llebaria A, Bout MV, Schwenn R, Simnett GM, Bedford DK, Eyles CJ (1995) The large angle spectroscopic coronagraph (LASCO). Sol Phys 162:357–402. doi:10.1007/BF00733434

    Google Scholar 

  • Bučík R, Kudela K, Kuznetsov SN (2006) Satellite observations of lightning-induced hard X-ray flux enhancements in the conjugate region. Ann Geophys 24:1969–1976

    Google Scholar 

  • Burkepile JT, Hundhausen AJ, Stanger AL, St Cyr OC, Seiden JA (2004) Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J Geophys Res 109:3103

    Google Scholar 

  • Burlaga LF (1991) Magnetic clouds. In: Schwenn R, Marsch E (eds) Physics of the inner heliosphere, vol II: particles, waves and turbulence, vol 20 of physics and chemistry in space, pp 1–22. Springer, Berlin

  • Burlaga LF, Sittler E, Mariani F, Schwenn R (1981) Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J Geophys Res 86:6673–6684

    Google Scholar 

  • Burton RK, McPherron RL, Russell CT (1975) An empirical relationship between interplanetary conditions and D st. J Geophys Res 80:4204–4214. doi:10.1029/JA080i031p04204

    Google Scholar 

  • Cane HV, Erickson WC (2005) Solar type II radio bursts and IP type II events. Astrophys J 623:1180–1194

    Google Scholar 

  • Cane HV, Richardson IG (2003) Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J Geophys Res 108:1156

    Google Scholar 

  • Cannon PS (1994a) Propagation in the ionosphere (A). In: Propagation modelling and decision aids for communications, radar and navigation systems, pp 1A1–1A10. NATO-AGARD

  • Cannon PS (1994b) Propagation in the ionosphere (A). In: Propagation modelling and decision aids for communications, radar and navigation systems, pp 1B1–1B17. NATO-AGARD

  • Cargill PJ (2009) Coronal magnetism: difficulties and prospects. Space Sci Rev 144:413–421. doi:10.1007/s11214-008-9446-9

    Google Scholar 

  • Cargill PJ, Harra LK (2007) Coronal mass ejection. In: Kamide Y, Chian A (eds) Handbook of the solar terrestrial environment. Springer, Berlin, pp 118–132

    Google Scholar 

  • Carlowicz MJ, Lopez RE (2002) Storms from the Sun. Joseph Henry Press, Washington

    Google Scholar 

  • Carrington RC (1859) Description of a ‘singular appearance’ seen in the Sun on September 1, 1859. Mon Not R Astron Soc 20:13–15

    Google Scholar 

  • Celsius A, Hiorter OP (1747) Om Magnet-nalens Atskillige andreingar. Kongle Swen Wetenskaps Acad Handlingar, pp 27–43

  • Cerruti AP, Kintner PM, Gary DE, Lanzerotti LJ, De Paula ER, Vo HB (2006) Observed solar radio burst effects on GPS/wide area augmentation system carrier-to-noise ratio. Space Weather 4:S10006. doi:10.1029/2006SW000254

    Google Scholar 

  • Chan Y, Reeves GD, Friedel RHW (2007) The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Phys 3:614

    Google Scholar 

  • Chang SW, Scudder JD, Fennell JF, Friedl R, Lepping RP, Russell CT, Trattner KJ, Fuselier SA, Peterson WK, Spence HE (2000) Energetic magnetosheath ions connected to the earth’s bow shock: possible source of cusp energetic ions. J Geophys Res 105:5471

    Google Scholar 

  • Chen J, Fritz TA (1999) Features of the cusp energetic particle events. Adv Space Res 24:103–107

    Google Scholar 

  • Chen J, Fritz TA (2001) Energetic oxygen ions of ionospheric origin observed in the Cusp. Geophys Res Lett 28:1459–1462

    Google Scholar 

  • Chen J, Fritz TA (2002a) Multiple spacecraft observations of energetic ions during a major geomagnetic storm. Adv Space Res 30:1749–1756

    Google Scholar 

  • Chen J, Fritz TA (2002b) The global significance of the CEP events. In: Wang HN, Xu RL (eds) Solar-terrestrial magnetic activity and space environment. COSPAR Colloquia Series, vol 14, pp 239–249

  • Chen J, Fritz TA, Sheldon RB, Spence HE, Spjeldvik WN, Fennell JF, Livi S, Russell CT, Pickett JS, Gurnett DA (1998) Cusp energetic particle events: implications for a major acceleration region of the magnetosphere. J Geophys Res 103:69–78

    Google Scholar 

  • Chen Z, Gao Y, Liu Z (2005) Evaluation of solar radio bursts’ effect on GPS receiver signal tracking within international GPS service network. Radio Sci 40:RS3012. doi:10.1029/2004RS003066

    Google Scholar 

  • Chupp EL (1988) Solar neutron observations and their relation to solar flare acceleration problems. Solar Phys 118:137

    Google Scholar 

  • Chupp EL, Forrest DJ, Ryan JM, Heslin J, Reppin C, Pinkau K, Kanbach G, Rieger E, Share GH (1982) A direct observation of solar neutrons following the 01:18 UT flare on 1982 June 3. Astrophys J 318:913–925

    Google Scholar 

  • Chupp EL, Debrunner H, Flückiger EO, Forrest DJ, Golliez F, Kanbach G, Vestrand WT, Cooper J, Share G (1987) Solar neutron emissivity during the large flare on 1982 June 3. Astrophys J 318:913

    Google Scholar 

  • Cid C, Hildago MA, Nieves-Chinchilla T, Sequeiros J, Viñas AF (2002) Plasma and magnetic field inside magnetic clouds: a global study. Sol Phys 207:187–198

    Google Scholar 

  • Cid C, Hildago MA, Saiz E, Cerrato Y, Sequeiros J (2004) Sources of intense geomagnetic storms over the rise of solar cycle 23. Sol Phys 223:231–243

    Google Scholar 

  • Clark TDG (2001) A review of effects of space weather on ground based technology. In: Proceedings of the workshop on space weather, ESTEC

  • Cliver EW, Svalgaard L (2004) The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol Phys 224:407–422

    Google Scholar 

  • Cliver EW, Webb DF, Howard RA (1999) On the origin of solar metric type II bursts. Solar Phys 187:89–114

    Google Scholar 

  • Cliver EW, Nitta NV, Thompson BJ, Zhang J (2004) Coronal shocks of November 1997 revisited: the CME Type II timing problem. Sol Phys 225:105–139

    Google Scholar 

  • Colak T, Qahwaji R (2009) Automated solar activity prediction: a hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7:S06001. doi:10.1029/2008SW000401

    Google Scholar 

  • Contarino L, Zuccarello F, Romano P, Spadaro D, Guglielmino SL, Battiato V (2009) Flare forecasting based on sunspot-groups characteristics. Acta Geophys 57:52–63. doi:10.2478/s11600-008-0067-1

    Google Scholar 

  • Cooke DJ, Humble JE, Shea MA, Smart DF, Lund N, Rasmussen IL, Byrnak B, Goret P, Petrou N (1991) On cosmic-ray cutoff terminology. Il Nuovo Cimento 14C:213–234

    Google Scholar 

  • Cremades H, Bothmer V (2004) On the three dimensional configuration of coronal mass ejections. Astron Astrophys 422:307–322

    Google Scholar 

  • Cremades H, Bothmer V, Tripathi D (2006) Properties of structured coronal mass ejections in solar cycle 23. Adv Space Res 38:461–465

    Google Scholar 

  • Cronin J, Gaisser TK, Swordy SP (1997) Cosmic rays at the energy frontiers. Sci Am 276:44

    Google Scholar 

  • Crooker NU, Cliver EW, Tsurutani BT (1992) The semi-annual variation of great geomagnetic storms and the post shock Russell–McPherron effect preceding coronal mass ejecta. Geophys Res Lett 19:429

    Google Scholar 

  • Crooker NU, Gosling JT, Bothmer V, Forsyth RJ, Gazis PR, Hewish A, Horbury TS, Intriligator DS, Jokipii JR, Kota J, Lazarus AJ, Lee MAI, Lucek E, Marsch E, Posner A, Richardson IG, Roelof EC, Schmidt JM, Siscoe GL, Tsurutani BT, Wimmer-Schweingruber RF (1999) CIR morphology, turbulence, discontinuities, and energetic particles: report of working group 2. Space Sci Rev 89:179–220

    Google Scholar 

  • Crosby NB (2007) Major radiation environments in the heliosphere and their implications for interplanetary travel. In: Space weather—physics and effects, pp 131–171

  • Crosby NB, Rycroft MJ, Tulunay Y (2006) Overview of a graduate course delivered in Turkey, emphasizing solar-terrestrial physics and space weather. Surv Geophys 27:319–364

    Google Scholar 

  • Daglis IA (1997a) The role of magnetosphere-ionosphere coupling in magnetic storm dynamics. In: Tsurutani BT, Gonzelez WD, Kamide Y, Arballo JK (eds) Geophysical Monograph Series, vol 98. AGU, Washington

    Google Scholar 

  • Daglis IA (1997b) Terrestrial agents in the realm of space storms: Missions study oxygen ions. Eos Trans AGU 24:245

    Google Scholar 

  • Daglis IA (ed) (2001) Space storms and space weather hazards. Kluwer, Dordrecht, p 482

    Google Scholar 

  • Daglis IA, Kamide Y (2003) The role of magnetosphere-ionosphere coupling in magnetic storm dynamics. In: Sharma AS, Kamide Y, Lakhina GS (eds) Disturbances in geospace: the storm–substorm relationship, vol. 142 of Geophysical Monograph, pp 119–129. American Geophysical Union, Washington

  • Daglis IA, Thorne RM, Baumjohann W, Orisini S (1999) The terrestrial ring current: origin, formation and decay. Rev Geophys 37:407–438

    Google Scholar 

  • Daly E, Lemaire J, Heynderickx D, Rodgers D (1996) Problems with models of the radiation belts. IEEE Trans Nucl Sci NS-43:403

    Google Scholar 

  • Darrouzet F, Gallagher DL, André N, Carpenter DL, Dandouras I, Décréau PME, Keyser JD, Denton RE, Foster JC, Goldstein J (2009) Plasmaspheric density structures and dynamics: properties observed by the CLUSTER and IMAGE missions. Space Sci Rev 145:55–106

    Google Scholar 

  • Davies JA, Harrison RA, Rouillard AP, Sheeley NR Jr, Perry CH, Bewsher D, Davis CJ, Eyles CJ, Crothers SR, Brown DS (2009) The stereo mission. Geophys Res Lett 36:L02102. doi:10.1029/2008GL036182

    Google Scholar 

  • Davis CJ, Davies JA, Lockwood M, Rouillard AP, Eyles CJ, Harrison RA (2009) Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys Res Lett 36:L08102. doi:10.1029/2009GL038021

    Google Scholar 

  • Demirkol M, Inan US, Bell T, Kanekal S, Wilkinson D (1999) Ionospheric effects of relativistic electron enhancement events. Geophys Res Lett 26:3557

    Google Scholar 

  • Denton MH, Borovsky JE, Skoug RM, Thomsen MF, Lavraud B, Henderson MG, McPherron RL, Zhang JC, Liemohn MW (2006) Geomagnetic storms driven by ICME and CIR-dominated solar wind. J Geophys Res 111:A07S07. doi:1029/2005JA011436

    Google Scholar 

  • Denton MH, Ulich T, Turunen E (2009) Modification of midlatitude ionospheric parameters in the F2 layer by persistent high-speed solar wind streams. Space Weather 7:S04006. doi:10.1029/2008SW000443

    Google Scholar 

  • Desorgher L, Flückiger EO, Gurtner M, Moser MR, Bütikofer R (2005) Atmocosmics: a GEANT4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int J Mod Phys A 20:6802–6804. doi:10.1142/S0217751X05030132

    Google Scholar 

  • Desorgher L, Kudela K, Flückiger E, Bütikofer R, Storini M, Kialegee V (2009) Comparison of Earth’s megnetospheric magnetic field models in the context of cosmic ray physics. Acta Geophys 57:75–87

    Google Scholar 

  • DeVore CR, Antiochos SK (2008) Homologous confined filament eruptions via magnetic breakout. Astrophys J 680:740–756

    Google Scholar 

  • Dorman LI, Belov AV, Eroshenko EA, Gromova LI, Iucci N, Levitin AE, Parisi M, Ptitsyna NG, Pustilnik LA, Tyasto MI, Vernova ES, Villoresi G, Yanke VG, Zukerman IG (2005) Different space weather effects in anomalies of the high and low orbital satellites. Adv Space Res 36:2530–2536

    Google Scholar 

  • Dubinin E, Skalsky A, Song P, Savin S et al (2002) Polar-Interball co-ordinated observations of plasma and magnetic field characteristics in the regions of the northern and southern distant cusps. J Geophys Res 107:1053. doi:10.1029/2001JA900068

    Google Scholar 

  • Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47–48

    Google Scholar 

  • Dungey JW (1981) Magnetospheric plasmas. Phil Trans R Lond 300:489–496

    Google Scholar 

  • Ebihara Y, Ejiri M (2003) Numerical simulation of the ring current: review. Space Sci Rev 105:377–452

    Google Scholar 

  • Echer W, Gonzalez WD, Alves MV (2006) On the geomagnetic effects of solar wind interplanetary magnetic structures. Space Weather 4:S06001. doi:10.1029/2005SW000200

    Google Scholar 

  • Echer E, Gonzalez WD, Tsurutani BT (2008) Interplanetary conditions leading to superintense geomagnetic storms (D st ≤ −250 nT) during solar cycle 23. Geophys Res Lett 35:6. doi:10.1029/2007GL031755

    Google Scholar 

  • Elkington SR, Hudson MK, Chan AA (1999) Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations. Geophys Res Lett 26:3273

    Google Scholar 

  • Evenson P, Meyer P, Yanagita S, Forrest DJ (1984) Electron-rich particle events and the production of gamma rays by solar flares. Astrophys J 283:439

    Google Scholar 

  • Eyles CJ, Simnett GM, Cooke MP, Jackson BV, Buffington A, Hick PP, Waltham NR, King JM, Anderson PA, Holladay PE (2003) The solar mass ejection imager (SMEI). Sol Phys 217:319–347. doi:10.1023/B:SOLA.0000006903.75671.49

    Google Scholar 

  • Fahr HJ, Neutsch W, Grzedzielski S, Macek W, Ratkiewicz-Landowska R (1986) Plasma transport across the heliopause. Space Sci Rev 43:329–381

    Google Scholar 

  • Falconer D, Moore R, Gray A (2007) Forecasting solar coronal mass ejections from MDI magnetograms. Am Astron Soc Meet 210:2702

    Google Scholar 

  • Fan Y, Gibson SE (2007) Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys J 668:1232–1245

    Google Scholar 

  • Farrugia CJ, Burlaga LF, Lepping RP (1997) Magnetic clouds and the quiet-storm effect at Earth. In: Tsurutani BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms, vol 98 of Geophysical Monograph. American Geophysical Union, Washington, pp 91–106

    Google Scholar 

  • Feldman WC, Symbalisty EMD, Roussel-Dupré RA (1996) Hard X ray survey of energetic electrons from low-Earth orbit. J Geophys Res 101:5195

    Google Scholar 

  • Feng HQ, Wu DJ, Chao JK (2006) Identification of configuration and boundaries of interplanetary magnetic clouds. J Geophys Res 111:A07S90. doi:10.1029/2005JA011509

    Google Scholar 

  • Filjar R (2008) A study of direct severe space weather effects on GPS ionospheric delay. J Navig 61:115–128 (Cambridge University Press)

    Google Scholar 

  • Flury W, Contant JM (2001) The updated IAA position paper on orbital debris. In: Huguette S-L (ed) Proceedings of the 3rd European conference on space debris, 19–21 March 2001, Darmstadt, Germany, ESA SP-473, vol 2, pp 841–849

  • Fok MC, Moore TE, Kozyra JU, Ho GC, Hamilton DC (1995) Three-dimensional ring current decay model. J Geophys Res 100:9619–9696

    Google Scholar 

  • Forbes TG, Linker JA, Chen J, Cid C et al (2006) CME theory and models. Space Sci Rev 123:251

    Google Scholar 

  • Forsyth RJ, Bothmer V, Cid C, Crooker NU et al (2006) ICMEs in the inner heliosphere: origin, evolution and propagation effects. Space Sci Rev 123:383–416

    Google Scholar 

  • Friedel RHW, Reeves GD, Obara T (2002) Relativistic electron dynamics in the inner magnetosphere—a review. J Atmos Solar Terr Phys 64:265

    Google Scholar 

  • Fritz TA, Fung SF (eds) (2005) The magnetospheric cusps: structure and dynamics. Surv Geophys 26:95–133

  • Fritz TA, Chen J, Siscoe GL (2003a) Energetic ions, large diamagnetic cavities, and Chapman–Ferraro Cusp. J Geophys Res 108:1028–1036

    Google Scholar 

  • Fritz TA, Alothman M, Bhattacharjya J, Matthews D, Chen J (2003b) Butterfly pitch angle distributions observed by ISEE-1. Planet Space Sci 51:205–219

    Google Scholar 

  • Fry CD, Sun W, Deehr CS, Dryer M, Smith Z, Akasofu SI, Tokumaru Maud Kojima M (2001) Improvements to the HAF solar wind model for space weather predictions. J Geophys Res 106:20985–21001

    Google Scholar 

  • Fry CD, Dryer M, Deehr CS, Smith Z, Sun W, Akasofu SI, Smith Z (2003) Forecasting solar wind structure and shock arrival times using an ensemble of models. J Geophys Res 108:1070

    Google Scholar 

  • Fu SY, Zong QG, Pu ZY, Xiao CJ, Korth A, Daly PW, Reme H (2005) Energetic particles observed in the Cusp region during a storm recovery phase. Surv Geophys 26:241–254. doi:10.1007/s10712-005-1881-5

    Google Scholar 

  • Funk S (2008) VHE Gamma-ray supernova remnants. Adv Space Res 41(3):464–472

    Google Scholar 

  • Gabriel AH (1974) A magnetic model of the chromosphere-corona transition region. In: Athay RG (ed) Chromospheric fine structure, IAU symposium, vol 56, pp 295–298. D. Redel Publ. Company, Dordrecht

  • Gaisser TK (1990) Cosmic rays and particle physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Ganushkina NY, Pulkkinen TI, Fritz T (2005) Role of substorm-associated impulsive electric fields in the ring current development during storms. Ann Geophys 23:579–591

    Google Scholar 

  • Garcia HA (2004) Forecasting methods for occurrence and magnitude of proton storms with solar hard X-rays. Space Weather, 2:S06003, 10. doi:10.1029/2003SW000035

  • Garrett HB (1981) The charging of spacecraft surfaces. Rev Geophys 19:577

    Google Scholar 

  • Gary DE, Keller CU (2004) Solar and space weather radiophysics. Springer, Heidelberg

    Google Scholar 

  • Gary DE, Lanzerotti LJ, Nita GM, Thomson DJ (2005) In: Effects of space weather on technology infrastructure, NATO Sci Series, vol 176. Springer, Amsterdam, p 203. doi:10.1007/1-4020-2754-0_11

  • George JS, Lave KA, Wiedenbeck ME, Binns WR, Cummings AC, Davis AJ, de Nolfo GA, Hink PL, Israel MH, Leske RA, Mewaldt RA, Scott LM, Stone EC, von Rosenvinge TT, Yanasak NE (2009) Elemental composition and energy spectra of galactic cosmic rays during solar cycle 23. Astrophys J 698:1666–1681

    Google Scholar 

  • Georgoulis MK, Rust DM (2007) Quantitative forecasting of major solar flares. Astrophys J Lett 661:L109

    Google Scholar 

  • Giacalone J, Jokipii JR, K′ota J (2002) Particle acceleration in solar wind compression regions. Astrophys J 573:845–850

    Google Scholar 

  • Glauert SA, Horne RB (2005) Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J Geophys Res 110:A04206. doi:10.1029/2004JA010851

    Google Scholar 

  • Gleisner H, Watermann J (2006a) Concepts of medium-range (1–3 days) geomagnetic forecasting. Adv Space Res 37:1116–1123

    Google Scholar 

  • Gleisner H, Watermann J (2006b) Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectivness. Space Weather 4:S06006. doi:10.1029/2006SW000220

    Google Scholar 

  • Goldstein H (1983) Solar wind fire. NASA Conf. Pub. CP-2280, 731

  • Goldstein J (2006) Plasmasphere response: tutorial and review of recent imaging results. Space Sci Rev 124. doi:10.1007/s11214-006-9105-y

  • Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is geomagnetic storm? J Geophys Res 99:5771–5792

    Google Scholar 

  • Gonzalez WD, Echer E, Clua-Gonzalez G, Tsurutani BT (2007) Interplanetary origin of intense geomagnetic storms (D st < −100 nT) during solar cycle 23. Geophys Res Lett 34:L06101. doi:10.1029/2006GL028879

    Google Scholar 

  • Goodman JM (2005) In space weather & telecommunications. Springer, New York, p 1

    Google Scholar 

  • Goodman JM, Aarons J (1990) Ionospheric effects on modern electronic systems. Proc IEE 78:512–528

    Google Scholar 

  • Gopalswami N, Lara A, Yashiro S, Kaiser MI, Howard RA (2001) Predicting the 1-AU arrival times of coronal mass ejections. J Geophys Res 106:29207–29218

    Google Scholar 

  • Gopalswamy N (2004) A global picture of CMEs in the inner heliosphere. In: Poletto G, Suess ST (eds) The sun and the heliosphere as an integrated system, vol 317 of Astrophysics and Space Science Library. Kluwer, Dordrecht, pp 201–251

    Google Scholar 

  • Gopalswamy N (2009) The sun and earth’s space environment. In: Proceeding of the 2009 international conference on space science and communication 26–27 Oct, Port Dickson, Negeri Sembilan, Malaysia, pp 5–10

  • Gopalswamy N, Kaiser ML, Lepping RP, Kahler SW, Ogilvie K, Berdichevesky D, Kondo T, Isobe T, Akioka M (1998) Origin of coronal and interplanetary shocks—a new look with WIND spacecraft data. J Geophys Res 103:307–316

    Google Scholar 

  • Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard RA (2004) Intensity variation of large solar energetic particle events associated with coronal mass ejections. J Geophys Res 109:A12105. doi:10.1029/2004JA10602

    Google Scholar 

  • Gopalswamy N, Yashiro S, Akiyama S (2007) Geoeffectiveness of halo coronal mass ejections. J Geophys Res 112:A06112. doi:10.1029/2006JA012149

    Google Scholar 

  • Gosling JT (1993) The solar flare myth. J Geophys Res 98:18937–18949. doi:10.1029/93JA01896

    Google Scholar 

  • Gosling JT, Hildner E, MacQueen RM, Munro RH, Poland AI, Ross CL (1974) Mass ejections from the sun—a view from SKYLAB. J Geophys Res 79:4581–4587

    Google Scholar 

  • Gosling JT, Hundhausen AJ, Bame SJ (1976) Solar wind stream evolution at large heliocentric distances—experimental demonstration and the test of a model. J Geophys Res 81:2111–2122

    Google Scholar 

  • Gosling JT, Thomsen MF, Bame SJ, Zwickl RD (1987) The eastward deflection of fast coronal mass ejecta in interplanetary space. J Geophys Res 92:12399–12406. doi:10.1029/JA092iA11p12399

    Google Scholar 

  • Gosling JT, Bame SJ, Feldman WC, McComas DJ, Phillips JL, Goldstein BE (1993) Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond approximately 2 AU: ULYSSES. Geophys Res Lett 20:2335–2338

    Google Scholar 

  • Gosling JT, Skoug RM, Haggerty DK, McComas DJ (2005) Absence of energetic particle effects associated with magnetic reconnection exhausts in the solar wind. Geophys Res Lett 32:L14113. doi:10.1029/2005GL023357

    Google Scholar 

  • Green LM, Matthews SA, Van Driel-Gesztelyi L, Harra LK, Culhane JL (2002) Multi-wavelength observations of an X-class flare without a coronal mass ejection. Solar Phys 205:325–339

    Google Scholar 

  • Gulyaeva TL, Stanislawaka I (2010) Magnetosphere-associated storms and the autonomous storms in the ionosphere–plasmasphere environment. J Solar Terr Phys 72:90–96

    Google Scholar 

  • Häder DP, Dachev T (2003) Measurements of solar and cosmic radiation during spaceflight. Surv Geophys 24:229–246

    Google Scholar 

  • Haggerty DK, Roelof EC (2002) Impulsive near-relativistic solar electron events: delayed injection with respect to solar electromagnetic emission. Astrophys J 579:841–853

    Google Scholar 

  • Hakamada K, Akasofu SI (1982) Simulation of three dimensional solar wind disturbances and resultion geomagnetic storms. Space Sci Rev 31:3–70

    Google Scholar 

  • Halley E (1692) An account of the cause of the change of the variation of the magnetical needle with an hypothesis of the structure of the internal parts of the Earth. Phil Trans , xvi:563–587. The paper was read to the Royal Society on 25 November 1691

  • Hanslmeier A (2003) Space weather-effects of radiation on manned space missions. Hvar Obs Bull 27:159–170

    Google Scholar 

  • Hastings D, Garrett H (1996) Spacecraft-environment interactions. Cambridge University Press, Cambridge, p 292

    Google Scholar 

  • Hathaway DH, Wilson RM (2004) What the sunspot record tells us about space climate. Sol Phys 224:5–19

    Google Scholar 

  • Henderson MG, Reeves GD, Skoug RM, Thomsen MF, Denton MH, Mende SB, Immel TJ, Brandt PC, Singer HJ (2006) Magnetospheric and auroral activity during the April 18, 2002 sawtooth event. J Geophys Res 111:A01303. doi:10.1029/2005JA011320

    Google Scholar 

  • Hey J (1946) Solar radiations in the 4–6 meter radio wavelength band. Nature 158:234–236

    Google Scholar 

  • Hildner E (1977) Mass ejections from the solar corona in to interplanetary space. In: Shea MA, Smart DF, Wu ST (eds) Study of travelling interplanetary phenomena 1977. Proceedings of the L.D. de Feiter memorial symposium held in Tel Aviv, Israel, 7–10 June, vol 71 of Astrophysics and Space Science Library. Reidel, Dordrecht, pp 3–20

  • Holman GD (2003) The effects of low- and high-energy cutoffs on solar flare microwave and hard x-ray spectra. Astrophys J 586:606. doi:10.1086/367554

    Google Scholar 

  • Hones EW Jr (1979) Plasma flow in the magnetotail and its implications for substorm theories. In: Akasofu SI (ed) Dynamics of the magnetosphere. Proceedings of the A.G.U. Chapman conference ‘magnetospheric substorms and related plasma processes’, held at Los Alamos Scientific Laboratory, Los Alamos, 9–13, Oct 1978, vol 78 of Astrophysics and Space Science Library, p 545

  • Horne RB (2002) The contribution of wave particle interactions to electron loss and acceleration in the Earth’s radiation belts during geomagnetic storms. Review of Radio Science 1999–2002. Wiley, New York, pp 801–828

  • Horne RB (2007) Plasma astrophysics: acceleration of killer electrons. Nature Phys 3:590

    Google Scholar 

  • Horne RB, Thorne RM (1998) Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett 25:3011–3014

    Google Scholar 

  • Horne RB, Meredith NP, Thorne RM, Heynderickx D, Iles RHA, Anderson RR (2003a) Evolution of energetic electron pitches angle distributions during storm time electron acceleration to megaelectronvolt energies. J Geophys Res 108:1016. doi:10.1029/2002JA0099165

    Google Scholar 

  • Horne RB, Glauert SA, Thorne RM (2003b) Resonant diffusion of radiation belt electrons by whistler-mode chorus. Geophys Res Lett 30:1493. doi:10.1029/2003GL016963

    Google Scholar 

  • Horne RB, Thorne RM, Shprits YY, Meredith NP, Glauert SA, Smith AJ, Kanekal SG, Baker DN, Engebretson MJ, Posch JL, Spasojevic M, Inan US, Pickett JS, Decreau PME (2005) Wave acceleration of electrons in the Van Allen radiation belts. Nature 437:227–230. doi:10.1038/nature03939

    Google Scholar 

  • Horne RB, Meredith NP, Glauert SA, Varotsou A, Boscher D, Thorne RM, Shprits YY, Anderson RR (2006) Recurrent magnetic storms: corotating solar wind streams. In: Tsurutani BT, McPherron RL, Gonzalez WD, Lu G, Sobral JHA, Gopalswamy N (eds) Geophys Monogr Series, vol 167. AGU, Washington, p 151

    Google Scholar 

  • Hovestadt D, Klecker B, Scholer M, Gloeckler G, Ipavich FM, Fan CY, Fisk LA, Ogallagher JJ (1978) Evidence for solar wind origin of energetic heavy ions in the Earth’s radiation belt. Geophys Res Lett 5:1055–1057

    Google Scholar 

  • Howard RA, Michels DJ, Sheeley NR Jr, Koomen MJ (1982) The observation of a coronal transient directed at earth. Astrophys J 263:L101–L104

    Google Scholar 

  • Howard RA, Sheeley NR Jr, Michels DJ, Koomen MJ (1985) Coronal mass ejections–1979–1981. J Geophys Res 90:8173–8191

    Google Scholar 

  • Howard RA et al (2008) Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136:67–115

    Google Scholar 

  • Hudson MK, Kotelnikov AD, Li X, Roth I, Temerin M, Wygant J, Blake JB, Gussenhoven MS (1995) Simulation of proton radiation belt formation during the March 24, 1991 SSC. Geophys Res Lett 22:291

    Google Scholar 

  • Hundhausen AJ (1972) Coronal expansion and solar wind, vol 5 of Physics and Chemistry in Space. Springer, Berlin

    Google Scholar 

  • Hundhausen AJ (1997) Coronal mass ejections. In: Jokipii JR, Sonett CP, Giampapa MS (eds) Cosmic winds and the heliosphere. University of Arizona Press, Tucson, pp 259–296

    Google Scholar 

  • Hunsucker RD, Hargreaves JK (2003) The high-latitude ionosphere and its effects on radio propagation. Cambridge University Press, Cambridge, p 617

    Google Scholar 

  • Huttunen KEJ, Koskinen HEJ (2004) Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann Geophys 22:1729–1738

    Google Scholar 

  • Huttunen KEJ, Kilpua SP, Pulkkinen A, Viljanen A, Tanskanen E (2008) Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather 6:S10002. doi:10.1029/2007SW000374

    Google Scholar 

  • Iles RHA, Meredith NP, Fazakerley AN, Horne RB (2006) Phase space density analysis of the outer radiation belt energetic electron dynamics. J Geophys Res 111:A03204. doi:10.1029/2005JA011206

    Google Scholar 

  • Isliker H, Benz AO (1994) Catalogue of 1–3 GHz solar flare radio emission. Astron Astrophys Suppl Ser 104:145

    Google Scholar 

  • Iucci N, Parisi M, Storini M, Villoresi G (1979) Forbush decreases: origin and development in the interplanetary space. Nuovo Cimento 2C:1–52

    Google Scholar 

  • Jackson BV, Buffington A, Hick PP et al (2004) The solar mass ejection imager (SMEI): the mission. Sol Phys 225:177–207. doi:10.007/s11207-004-2766-3

    Google Scholar 

  • Jacobs C, Poedts S, Van der Holst B (2006) The effect of the solar wind on CME triggering by magnetic foot point shearing. Astron Astrophys 450:793–803

    Google Scholar 

  • Jensen JM, Lundstedt H, Thompson MJ, Pijpers FP, Rajaguru SP (2004) Application of local-area helioseismic methods as predicters of space weather. In: Danesy D (ed) Helio- and asteroseismology: towards a golden future. Proceedings of SOHO 14/GONG + 2004 Meeting, ESA SP-559, pp 497–500

  • Jones JBL, Bentley RD, Hunter R, Iles RHA, Taylor GC, Thomas DJ (2001) The practical issues of utilizing a European space weather programme for airline operations. In: Proceedings of ESA space weather workshop, ESA WPP-194

  • Kahler SW (1992) Solar flares and coronal mass ejections. Annu Rev Astron Astrophys 30:113–141

    Google Scholar 

  • Kahler SW (2001) Origin and properties of solar energetic particles in space. In: Song P et al (eds) Space weather, vol 125 of Geophysical Monograph. American Geophysical Union, Washington, pp 109–122

    Google Scholar 

  • Kahler SW, Vourlidas A (2005) Fast coronal mass ejection environments and the production of solar energetic particle events. J Geophys Res 110:A12S01. doi:10.1029/2005JA011073

    Google Scholar 

  • Kaiser ML, Kucera TA, Davila JM, St. Cyr OC, Guhathakurta M, Christian E (2008) The STEREO mission: an introduction. Space Sci Rev 136:5–16

    Google Scholar 

  • Kamide Y, Yakoyama N, Gonzalez WD, Tsuruthani BT, Brekke A, Masuda S (1998) Two step development of geomagnetic storms. J Geophys Res 103:6917

    Google Scholar 

  • Kennewell JA (1989) In: Proceedings of international conference on antennas and propagation (ICAP 89), Part 2 (A90-27776 11-32). NJ, Institution of Electrical Engineers, London, p 334

  • Kim RS, Cho KS, Moon YJ, Kim YH, Yi Y, Dryer M, Bong SC, Park YD (2005) Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003. J Geophys Res 110:A11104. doi:10.1029/2005JA011218

    Google Scholar 

  • Kintner PM, Coster AJ, Fuller-Rowell T, Mannucci AJ, Mendillo M, Heelis R (eds) (2008) Midlatitude ionospheric dynamics and disturbances. American Geophysical Union, Washington, p 327

    Google Scholar 

  • Kivelson MG, Russell CT (eds) (1995) Introduction to space physics. Cambridge University Press, Cambridge, p 568

    Google Scholar 

  • Klassen A, Bothmer V, Mann G, Reiner MJ, Krucker S, Vourlidas A, Kunow H (2002) Solar energetic electron events and coronal shocks. Astron Astrophys 385:1078

    Google Scholar 

  • Klassen A, Krucker S, Kunow H, Müller-Mellin R, Wimmer-Schweingruber R, Mann G, Posner A (2005) Solar energetic electrons related to the October 28, 2003 flare. J Geophys Res 110:A09S04. doi:10.1029/2004JA010985

    Google Scholar 

  • Klecker B (2009) Energetic particles in the heliosphere, invited talk. In: Proceedings of 21st ECRS, Kosice, 2008, pp 27–38

  • Klinkrad H (2007) On-orbit risk reduction—collision avoidance. J Aerosp Eng 221:955–962

    Google Scholar 

  • Klobuchar JA, Kunches JM, VanDierendonck AJ (1999) Eye on the ionosphere: potential solar radio burst effects on GPS Signal to noise. GPS Solut 3(2):69–71

    Google Scholar 

  • Klos Z, Rothkaehl H, Zbyszyski Z, Kuznetsov S, Gregorian O, Budko NI, Prutensky IS, Pulinets SA (1997) In: Sadowski M, Rothkaehl H (eds) Plasma 97: research and applications of plasmas, p 1

  • Klotz I (2010) A new era of space weather forecasting. Space Weather 8:S05003. doi:10.1029/2010SW000587

    Google Scholar 

  • Koons HC (1980) Characteristics of electrical discharges on the P78-2 satellite (SCATHA). In: 18th Aerospace sciences meeting, AIAA 80-0334, Pasadena

  • Koons HC, Mazur JE, Selesnick RS, Blake JB, Fennel JF, Roeder JL, Anderson PC (1999) The impact of the space environment on space systems, Engineering and Technology Group, The Aerospace Corp., Report TR-99(1670), El Segundo

  • Koskinen H, Tanskanenl E, Pirjola R, Pulkkinen A, Dyer C, Rodgers D, Cannon P, Mandeville JC, Boscher D (2001) Space weather effects (catalogue: http://www.esa-spaceweather.net/spweather)

  • Krucker S, Oakley PH, Lin RP (2009) Spectra of solar impulsive electron events observed near Earth. Astrophys J 691:806–810

    Google Scholar 

  • Kudela K (2009) On energetic particles in space. Acta Phys Slovaca 59:537–652

    Google Scholar 

  • Kudela K, Brenkus R (2004) Cosmic ray decreases and geomagnetic activity: list of évents 1982–2002. J Atmos Solar Terr Phys 66:1121–1126

    Google Scholar 

  • Kudela K, Storini M, Hofer MY, Belov A (2000) Cosmic Rays in Relation to Space Weather. Space Sci Rev 93:153–174

    Google Scholar 

  • Kudela K, Buˇc′ık R, Bob′ık P (2008) On transmissivity of low energy cosmic rays in disturbed magnetosphere. Adv Space Res 42:1300–1306

    Google Scholar 

  • Kuznetsov SN, Kurt VG, Yushkov BY, Myagkova IN, Kudela K, Kaˇsˇsovicov′a J, Slivka M (2005) Proton acceleration during 20 January 2005 solar flare: CORONAS-F observations of high-energy gamma emission and GLE. In: Proceedings of 29th ICRC, Pune, vol 1, pp 49–52

  • Kuznetsov SN, Myagkova IN, Yushkov BY, Denisov YI, Muraveva EA, Kudela K (2007) Dynamics of the earth radiation belts during strong magnetic storms based on CORONAS-F data. Solar Syst Res 41:338–347

    Google Scholar 

  • Laitinen TV, Janhunen P, Pulkkinen TI, Palmroth M, Koskinen HEJ (2006) On the characterization of magnetic reconnection in MHD simulations. Ann Geophys 24:3059–3069

    Google Scholar 

  • Lakhina GS, Tsurutani BT (1998) Explosive energy release by disruption of current sheets. Phys Scr 67. doi: 10.1088/0031-8949/1998/T74/013

  • Lanzerotti LJ (1979) Impacts of ionospheric/magnetospheric processes on terrestrial science and technology. In: Solar system plasma physics, vol III. Noth-Holland Publishing Co., p 319

  • Lanzerotti LJ (2001) Space weather effects on communications. In: Daglis IA (ed) Space storms and space weather hazards, NATO Science series. Kluwer, Dordrecht

    Google Scholar 

  • Lanzerotti LJ (2007) Space weather effects on communications. In: Bothmer V, Daglis IA (eds) Space weather-physics and effects. Springer, Praxis Publishing, Chichester, pp 247–268

    Google Scholar 

  • Lanzerotti L, Medford L, Maclennan C, Thomson D (1995) Studies of large-scale earth potentials across oceanic distances. AT & T Tech J (May/June):73

  • Lanzerotti L, Thomson D, Maclennan C (1999) Engineering issues in space weather, Modern Radio Science. Published for the International Union of Radio Science by Oxford University Press

  • Lanzerotti LJ, Gary DE, Nita GM, Thomson DJ, McIennan CG (2005) Noise in wireless systems from solar radio bursts. Adv Space Res 36:2253

    Google Scholar 

  • Laurenza M, Cliver EW, Hewitt J, Storini M, Ling AG, Balch CC, Kaiser ML (2009) A technique for short‐term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7. doi:10.1029/2007SW000379

  • Lavraud B, Reme H, Dunlop MW, Bosqued JM, Dandouras I, Sauvaud JA, Keling A, Phanr TD, Lundin TD, Cargil PJ, Escoubet CP, Carlson CW, Mcfadden JP, Parks GK, Moebius E, Kistler LM, Amata E, Bavassano-Cattaneo MB, Korth A, Klecker B, Balogh A (2005) Cluster observes the high-altitude cusp region. Surv Geophys 26:135–175

    Google Scholar 

  • Lazutin LL, Logachev YI (2009) Contribution of solar cosmic rays to the formation of the Earth’s proton radiation belt. Cosmic Res 47:374–377

    Google Scholar 

  • Lean J (1989) Contribution of ultraviolet irradiance variations to changes in the sun’s total irradiance science. Science 244:197. doi:10.1126/science.244.4901.197

    Google Scholar 

  • Lean J (1991) Variation in the sun’s radiative output. Rev Geophys 29:505–535

    Google Scholar 

  • Lee MA (2005) Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys J Suppl 158:38–67

    Google Scholar 

  • Lemaignen L (1988) Study of biological effects and radiation protection to future European manned space flights. ESA contract 6988/86/NL/PP (SC), AMD-BA Report, 323

  • Lemaire JF, Gringauz KI (1998) The earth’s plasmasphere. Cambridge University Press, Cambridge, p 350

    Google Scholar 

  • Li Y, Luhmann J (2006) Coronal magnetic field topology over filament channels: implication for coronal mass ejection initiations. Astrophys J 648:732–740

    Google Scholar 

  • Li X, Temerin MA (2001) The electron radiation belt. Space Sci Rev 95:569–580

    Google Scholar 

  • Li Y, Luhmann JG, Hoeksema JT, Zhao XP, Arge CN (2001) Visualizing CMEs and predicting geomagnetic storms from solar magnetic fields. In: Song P, Singer HJ, Siscoe G (eds) Space weather, Geophysics Monograph Series, vol 125. AGU, Washington, pp 177–182

    Google Scholar 

  • Lilensten J (ed) (2007) Space weather: research towards applications in Europe, Astrophysics and Space Science Library, vol 344. Springer, Dordrecht, p 330

    Google Scholar 

  • Lilensten J, Belehaki A (2009) Developing the scientific basis for monitoring, modelling and predicting space weather. Acta Geophys 57:1–14

    Google Scholar 

  • Lin RP (1980) Energetic particles in space. Solar Phys 67:393–399

    Google Scholar 

  • Lin RP (1985) Energetic solar electrons in the interplanetary medium. Solar Phys 100:537–561

    Google Scholar 

  • Lin RP, Mewaldt RA, Van Hollebeke MAI (1982) The energy spectrum of 20 keV–20 MeV electrons accelerated in large solar flares. Astrophys J 253:949–962

    Google Scholar 

  • Lindsay GM, Rusell CT, Luhmann (1995) Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness. J Geophys Res 100:16999

    Google Scholar 

  • Liu CM, Liu LG, Pirjola R, Wang ZZ (2009) Calculation of geomagnetically induced currents in mid to low-latitude power grids based on the plane wave method: a preliminary case study. Space Weather 7:S04005. doi:10.1029/2008SW000439

    Google Scholar 

  • Lockwood JA (1971) Forbush decreases in the cosmic radiation. Space Sci Rev 12:658–715

    Google Scholar 

  • Looper MD, Blake JB, Mewaldt RA (2005) Response of the inner radiation belt to the violent Sun–Earth connection events of October–November 2003. Geophys Res Lett 32:L03S06. doi:10.1029/2004GL021502

    Google Scholar 

  • Lopez RE, Baker DN, Allenet JE (2004) Sun unleashes Hallowe’en storm. Eos Trans AGU 85:105–108

    Google Scholar 

  • Lorentzen KR, Mazur JE, Looper MD, Fennell JF, Blake JB (2002) Multisatellite observations of MeV ion injections during storms. J Geophys Res 107:1231. doi:10.1029/2001JA000276

    Google Scholar 

  • Low BC (2001) Coronal mass ejections, magnetic flux ropes, and solar magnetism. J Geophys Res 106:25141–25164

    Google Scholar 

  • Lynch BJ, Antiochos SK, DeVore CR, Luhmann JG, Zurbuchen TH (2008) Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys J 683:1192

    Google Scholar 

  • Mann G (2005) Monitoring of the solar activity by LOFAR. Astron Nachr 326:618

    Google Scholar 

  • Manoharan PK et al (2004) Influence of coronal mass ejection interaction on propagation of interplanetary shock. J Geophys Res 109:A06109. doi:10.1029/2003JA010300

    Google Scholar 

  • Marusek JA (2007) Solar storm threat analysis. Impact 1–29. URL: http://www.breadandbutterscience.com/SSTA

  • Mathie RA, Mann IR (2000) A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys Res Lett 27:3261

    Google Scholar 

  • McAllister AH, Crooker NU (1997) Coronal mass ejections, corotating interaction regions, and geomagnetic storms. In: Crooker N, Joselyn JA, Feynman J (eds) Coronal mass ejections, Geophysics Monograph Series, vol 99. AGU, Washington, pp 279–289

    Google Scholar 

  • McComas DJ, Gosling JT, Winterhalter D, Smith EJ (1988) Interplanetary magnetic field draping about fast coronal mass ejecta in the outer heliosphere. J Geophys Res 93:2519–2526

    Google Scholar 

  • McComas DJ, Elliott HA, Schwadron NA, Gosling JT, Skoug V, Goldstein BE (2003) The three-dimensional solar wind around solar maximum. Geophys Res Lett 30:1–24. doi:10.1029/2003GL017136

    Google Scholar 

  • McCracken KG, Smart DF, Shea MA, Dreschhoff GAM (2001) 400 years of large fluence solar proton events. Conf Pap Int Cosmic Ray Conf 8:3209–3212

    Google Scholar 

  • McCracken KG, McDonald FB, Beer J, Raisbeck G, Yiou F (2004) A phenomenological study of the long-term cosmic ray modulation, 850–1958 AD. J Geophys Res 109:A12103. doi:10.1029/2004JA010685

    Google Scholar 

  • McKenna-Lawlor SMP (2008) Predicted interplanetary shocks/particles at Mars compared with in-situ observations: an overview. Planet Space Sci 56:1703–1712

    Google Scholar 

  • McPherron RL (1970) Growth phase of magnetospheric substorms. J Geophys Res 75:5592

    Google Scholar 

  • McPherron RL (1997) The role of substorms in generation of magnetic storms. In: Tsurutani BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms, Geophysical Monograph Series, vol 98. American Geophysical Union, Washington, p 131

    Google Scholar 

  • McPherron RL, Russell CT, Aubry MP (1973) Satellite studies of magnetospheric substorms on August 15, 1968. J Geophys Res 78:3131

    Google Scholar 

  • Melrose DB (1982) Plasma Astrophysics. Gordon & Breach, London

    Google Scholar 

  • Meredith NP, Horne RB, Anderson RR (2001) Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies. J Geophys Res 106:13165–13178

    Google Scholar 

  • Meredith NP, Horne RB, Thorne RM, Anderson RR (2003) Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys Res Lett 30:1871. doi:10.1029/2003GL017698

    Google Scholar 

  • Meredith NP, Horne RB, Clilverd MA, Horsfall D, Thorne RM, Anderson RR (2006) Origin of plasmaspheric hiss. J Geophys Res 111:A09217. doi:10.1029/2006JA011707

    Google Scholar 

  • Messerotti M (2008) Observing, modelling and predicting the effects of solar radio bursts on radio communications. In: Exploring the solar system and the universe. AIP Conference Proceedings, vol 1043, pp 277–283

  • Messerotti M, Zuccarello F, Guglielmino SI, Bothmer V, Lilensten J, Noci G, Storini M, Lundstedt H (2009) Solar weather event modelling and prediction. Space Sci Rev. doi:10.1007/s11214-009-9574-x

    Google Scholar 

  • Messerschmidt W (1933) Über Schwankungsmessungen der Ultrastrahlung II. Zeitschrift für Physik 85:332–335

    Google Scholar 

  • Mewaldt RA, Cohen CMS, Labrador AW, Leske RA, Mason GM, Desai MI, Looper MD, Mazur JE, Selesnick RS, Haggerty DK (2005) Proton, helium, and electron spectra during the large solar particle events of October–November 2003. J Geophys Res 110:A09S18. doi:10.1029/2005JA011038

    Google Scholar 

  • Michałek G, Gopalswamy N, Yashiro S (2003) A new method for estimating widths, velocities, and source location of halo coronal mass ejections. Astrophys J 584:472–478

    Google Scholar 

  • Miki′c Z, Linker J (1994) Disruption of coronal magnetic field arcades. Astrophys J 430:898–912

    Google Scholar 

  • Miroshnichenko LI (2008) Solar cosmic rays in the system of solar-terrestrial relations. J Atmos Solar Terr Phys 70:450–466

    Google Scholar 

  • Miyoshi Y, Morioka A, Misawa H (2000) Long term modulation of low altitude proton radiation belt by the earth’s atmosphere. Geophys Res Lett 27:2169

    Google Scholar 

  • Mizera PF (1983) A summary of spacecraft charging results. J Spacecraft Rockets 20:438

    Google Scholar 

  • Molinski TS (2002) Why utilities respect geomagnetically induced currents. J Atmos Solar Terr Phys 64:1765–1778

    Google Scholar 

  • Moon YJ, Cho KS, Dryer M, Kim YH, Bong SC, Chae J, Park YD (2005) New geoeffective parameters of very fast halo coronal mass ejections. Astrophys J 624:414–419

    Google Scholar 

  • Moorer DR, Baker DN (2001) Specification of energetic magnetospheric electrons. In: Song P, Singer HJ, Siscoe GL (eds) Space weather, vol 125, Geophysical Monograph. American Geophysical Union, Washington, pp 3321–3328

    Google Scholar 

  • Moses D, Droge W, Meyer P, Evenson P (1989) Characteristics of energetic solar flare electron spectra. Astrophys J 346:523–530

    Google Scholar 

  • Mulligan T, Russell CT (2001) Multi-spacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: cylindrically symmetric versus non-symmetric topologies. J Geophys Res 106:10581–10596

    Google Scholar 

  • Ng CK, Reames DV (2008) Shock acceleration of solar energetic protons: the first 10 minutes. Astrophys J Lett 686:L123–L126

    Google Scholar 

  • Noël S (1997) Decay of the magnetospheric ring current: a Monte Carlo simulation. J Geophys Res 102:2301–2308

    Google Scholar 

  • Noyes RW, Withbore GL (1972) The solar EUV emitting plasma. Space Sci Rev 13:612–637

    Google Scholar 

  • O’Brien K (2005) The theory of cosmic-ray and high-energy solar-particle transport in the atmosphere. In: Proceedings of the 7th international symposium on the natural radiation environment, pp 29–44

  • O’Sullivan D (2007) Exposure to galactic cosmic radiation and solar energetic particles. Radiat Prot Dosim 125:407–411

    Google Scholar 

  • Ondoh T, Marubashi K (eds) (2001) Science of space environment. Ohmsha IOS Press, Japan, p 302

    Google Scholar 

  • Osherovich V, Burlaga LF (1997) Magnetic clouds. In: Crooker N, Joselyn JA, Feynman J (eds) Coronal mass ejections, vol 99, Geophysical Monograph. American Geophysical Union, Washington, pp 157–168

    Google Scholar 

  • Parker EN (1957) Newtonian development of the dynamical properties of ionized gases of low density. Phys Rev 107:924

    Google Scholar 

  • Paschmann G (1997) Observational evidence for transfer of plasma across the magnetopause. Space Sci Rev 80:217–234

    Google Scholar 

  • Pick M, Klein KL, Trottet G (1990) Meter-Decimeter and Microwave Radio Observations of Solar Flares. Astrophys J Supl 73:165

    Google Scholar 

  • Pirjola R (1998) Modeling the electric and magnetic field at the Earth surface due to an auroral electrijet. J Atmos Solar Terr Phys 60:1139–1148

    Google Scholar 

  • Pirjola R (2007) Space weather effects on power grids. In: Bothmer V, Daglis L (eds) Space weather: physics, effects. Springer, Berlin, pp 269–288

    Google Scholar 

  • Pirjola R, ViIjanen A, Amm O, Pulkkinen A (1999) Power and pipelines (ground systems). In: Proceedings of a workshop on space weather, Nov 1998, ESA WPP-155

  • Pokhotelov D, Lotko W, Streltsov AV (2004) Simulations of resonant Alfvén waves generated by artificial HF heating of the auroral ionosphere. Ann Geophys 22:2943

    Google Scholar 

  • Priest ER, Forbes TG (2000) Magnetic reconnection: MHD theory and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Priest ER, Forbes TG (2002) The magnetic nature of solar flares. Astron Astrophys Rev 10:313–377. doi:10.1007/S001590100013

    Google Scholar 

  • Priest ER, Parnell CE, Martin SF (1994) A converging flux model of an X-ray bright point and an associated canceling magnetic feature. Astrophys J 427:459–474

    Google Scholar 

  • Prolss GW (2004) Physics of the Earth’s space environment. Springer, New York, p 514

    Google Scholar 

  • Pulkkinen T (2007) Space weather: terrestrial perspective. Living Rev Solar Phys 4:1. http://www.ava.fmi.fi

  • Pulkkinen TI, Baker DN, Pellinen RJ, Bückner J, Koskinen HEJ, Lopez RE, Dyson RL, Frank LA (1992) Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase. J Geophys Res 97:19283

    Google Scholar 

  • Pulkkinen TI, Ganushkina NY, Tanskanen EI, Kubyshkina MV, Reeves GD, Thomsen MF, Russell CT, Singer HJ, Slavin JA, Gjerloev JW (2006) Magnetospheric current systems during stormtime sawtooth events. J Geophys Res 111:A07S08. doi:10.1029/2005JA011447

    Google Scholar 

  • Qahwaji R, Colak T (2007) Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar Phys 241:195–211. doi:10.1007/s11207-006-0272-5

    Google Scholar 

  • R′egnier S, Priest ER (2007) Nonlinear force-free models for the solar corona: I. Two active regions with very different structure. Astronomy Astrophys 468:701–709

    Google Scholar 

  • Ramaty R, Murphy RJ, Kozlovsky B, Lingenfelter RE (1983) Gamma ray lines and neutrons from solar flares. Solar Phys 86:395

    Google Scholar 

  • Ramaty R, Mandzhavidze N, Hua X (eds) (1996) High energy solar physics, Proceedings of the conference held in Greenbelt, Aug 1995, vol 374 of AIP Conference proceedings. American Institute of Physics, Woodbury

  • Rastogi RG (1999) Geomagnetic storm effects at low latitude. Ann Geophys 17:438

    Google Scholar 

  • Reames DV (1999) Particle acceleration at the sun and in the heliosphere. Space Sci Rev 90:413–491

    Google Scholar 

  • Reames DV (2001) SEP: Space weather hazard in interplanetary space. In: Song PS, Singer HJ, Siscoe GL (eds) Space weather, Geophysical Monograph, vol 125. American Geophysical Union, Washington, p 101

    Google Scholar 

  • Reames DV, Barbier LM, Ng CK (1996) The spatial distribution of particles accelerated by coronal mass ejection—driven shocks. Astrophys J 466:473–486. doi:10.1086/177525

    Google Scholar 

  • Rees MH (1989) Physics and chemistry of the upper atmosphere. Cambridge University Press, Cambridge, p 289

    Google Scholar 

  • Reeves GD, Baker DN, Belian RD, Blake JB et al (1998) The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophys Res Lett 25:3265–3268

    Google Scholar 

  • Richardson IG, Zwickl RD (1984) Low energy ions in corotating interaction regions at 1 AU: observations. Planet Space Sci. 32:1179–1193

    Google Scholar 

  • Rodger CJ, Cho M, Clilverd MA, Rycroft MJ (2001) Lower ionospheric modification by lightning-EMP: simulation of the night ionosphere over the United States. Geophys Res Lett 28:199–202

    Google Scholar 

  • Rodriguez L, Zhukov AN, Cid C, Cerrato Y, Saiz E, Cremades H, Dasso S, Menvielle M, Aran A, Mandrini C, Poedts S, Schmieder B (2009) Three frontside full halo coronal mass ejections with a nontypical geomagnetic response. Space Weather 7:S06003. doi:10.1029/2008SW000453

    Google Scholar 

  • Root HG (1979) Earth-current effects on communication-cable power subsystems. IEEE Trans Electromagn Compat EMC-21:87

    Google Scholar 

  • Rothkaehl H, Klos Z (2003) Broadband HF emissions as an indicator of global changes within the ionosphere. In: Plasma processes in the near-earth space: Interball and beyond, vol 31, pp 1371–1376

  • Rothkaehl H, Parrot M (2005) Electromagnetic emissions detected in the topside ionosphere related to the human activity. J Atmos Solar Terr Phys 67:821–828

    Google Scholar 

  • Rottman G (1999) Solar ultraviolet irradiance and its temporal variation. J Atmos Solar Terr Phys 61:37–44

    Google Scholar 

  • Roussev II, Sokolov IV (2006) Models of solar eruptions: recent advances from theory and simulations. In: Solar eruptions and energetic particles, Geophysics Monograph Series, vol 165. American Geophysical Union, Washington, p 89

  • Russell CT (2008) The STEREO mission. Space Sci Rev 136:1–4

    Google Scholar 

  • Russell CT, McPherron RL (1973) Semiannual variation of geomagnetic activity. J Geophys Res 78:92

    Google Scholar 

  • Ryan JM, Lockwood JA, Debrunner H (2000) Solar energetic particles. Space Sci Rev 93:35–53

    Google Scholar 

  • Rycroft MJ, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:A00E37. doi:10.1029/2009JA014758

    Google Scholar 

  • Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites. J Atmos Solar Terr Phys 69:2485–2509. doi:10.1016/j.jastp.2007.09.004

    Google Scholar 

  • Sandel BR, King RA, Forrester WT, Gallagher DL, Broadfoot AL, Curtis CC (2001) Initial results from the IMAGE extreme ultraviolet imager. Geophys Res Lett 28:1439

    Google Scholar 

  • Scherer K, Fichtner H, Heber B, Mall U (eds) (2005) Space weather: the physics behind the slogan. Springer, Dordrecht, p 300

    Google Scholar 

  • Scholer M (1999) Origin, injection, and acceleration of CIR particles: theory, report of working group. Space Sci Rev 89:369–399

    Google Scholar 

  • Schrijver CJ (2007) A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys J Lett 655:L117. doi:10.1086/511857

    Google Scholar 

  • Schunk R, Nagy A (2009) Ionospheres: physics, plasma physics and chemistry, 2nd edn. Cambridge University Press, Cambridge, p 628

    Google Scholar 

  • Schunk RW, Sojka JJ (1996) Ionosphere-thermosphere space weather issues. J Atmos Terr Phys 58:1527–1574

    Google Scholar 

  • Schwadron NA, Fisk LA, Gloeckler G (1996) Statistical acceleration of interstellar pick-up ions in co-rotating interaction regions. Geophys Res Lett 23:2871–2874. doi:10.1029/96GL02833

    Google Scholar 

  • Schwenn R (2006a) Solar wind sources and their variations over the solar cycle. Space Sci Rev 124:51–76

    Google Scholar 

  • Schwenn R (2006b) Space weather: the solar perspective. Living Rev Solar Phys 3, lrsp-2006-2. http://www.ava.fmi.fi

  • Schwenn R, Lago AD, Huttunen E, Gonzalez WD (2005) The association of coronal mass ejections with their effects near the earth. Ann Geophys 23:1033–1059

    Google Scholar 

  • Sckopke N, Paschmann G, Rosenbauer H, Fairfield DH (1976) Geophys Res Lett 81:2687

    Google Scholar 

  • Selesnick RS, Looper MD, Mewaldt RA (2007) A theoretical model of the inner proton radiation belt. Space Weather 5:S04003. doi:10.1029/2006SW000275

    Google Scholar 

  • Sergeev VA, Mitchell DG, Russell CT, Williams DJ (1993) Structure of the tail plasma/current sheet at 11 Re and its changes in the course of a substorm. J Geophys Res 98:227–230

    Google Scholar 

  • Sergeev VA, Pellinen RJ, Pulkkinen TI (1996a) Steady magnetospheric convection: a review of recent results. Space Sci Rev 75:551–604

    Google Scholar 

  • Sergeev VA, Pulkkinen TI, Pellinen RJ (1996b) Coupled-mode model for the magnetospheric dynamics. J Geophys Res 101:13047

    Google Scholar 

  • Shea MA, Smart DF (1998) Space weather: the effects on operation in space. Adv Space Res 22:29

    Google Scholar 

  • Shea MA, Smart DF (2000a) Fifty years of cosmic radiation data. Space Sci Rev 93:229–262

    Google Scholar 

  • Shea MA, Smart DF (2000b) Cosmic ray implications for human health. Space Sci.Rev 93:187–205

    Google Scholar 

  • Sheldon RB, Spence HE, Sullivan JS, Fritz TA, Chen J (1998) The discovery of trapped energetic electrons in the outer cusp. Geophys Res Lett 25:1825–1828

    Google Scholar 

  • Shelley EG, Johnson RG, Sharp RD (1972) Satellite observations of energetic heavy ions during a geomagnetic storm. J Geophys Res 77:6104–6110

    Google Scholar 

  • Shih AY, Lin RP, Smith DM (2009) RHESSI observations of the proportional acceleration of relativistic >0:3 MeV electrons and >30 MeV protons in solar flares. Astrophys J Lett 698:L152–L157

    Google Scholar 

  • Shprits YY, Thorne RM, Horne RB, Glauert SA, Cartwright M, Russell CT, Baker DN, Kanekal SG (2006) Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm. Geophys Res Lett 33:L05104. doi:10.1029/2005GL024256

    Google Scholar 

  • Shprits Y, Kondrashov D, Chen Y, Thorne R, Ghil M, Friedel R, Reeves G (2007) Reanalysis of relativistic radiation belt electron fluxes using CRRES satellite data, a radial diffusion model, and a Kalman filter. J Geophys Res 112:A12216. doi:10.1029/2007JA012579

    Google Scholar 

  • Siingh D, Singh RP (2010) The role of cosmic rays in the earth’s atmospheric processes. Pramana J Phys 74:153–168

    Google Scholar 

  • Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh S, Pant V, Singh R, Singh AK (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110

    Google Scholar 

  • Singer SF (1958) Radiation belt and trapped cosmic-ray albedo. Phys Rev Lett 1:171

    Google Scholar 

  • Singer HJ, Heckman GR, Hirman JW (2001) Space weather forecasting: a grand challenge. In: Song P et al (eds) Space weather, vol 125, Geophysical Monograph. American Geophysical Union, Washington, pp 23–29

    Google Scholar 

  • Singh AK (2003) Solar wind and space weather. In: Singh RP, Singh R, Singh AK (eds) Solar terrestrial environment: space weather. Allied Publishers, New Delhi, pp 57–68

    Google Scholar 

  • Singh AK, Singh RP (2003) Space weather-causes, consequences and predictions. Indian J Phys 77B(6):611–616

    Google Scholar 

  • Singh DK, Singh RP, Kamra AK (2004) The electrical environment of the earth’s atmosphere: a review. Space Sci Rev 113:375–408

    Google Scholar 

  • Singh AK, Singh RP, Siingh D (2010) State study of earth’s plasmasphere: a review. Planet Space Sci (submitted)

  • Skone S, Cannon ME (1998) Detailed analysis of auroral zone WADGPS ionosphere grid accuracies during magnetospheric substorm event. In: Proceedings of the ION GPS-98, Nashville

  • Skone S, Yousuf R (2007) Performance of satellite based navigation for marine users during ionospheric disturbances. Space Weather 5:S01006. doi:10.1029/2006SW000246

    Google Scholar 

  • Song P, Singer HJ, Siscoe GL (eds) (2001) Space weather. American Geophysical Union, Washington, p 440

    Google Scholar 

  • Southworth GC (1945) Microwave radiation from the sun. J Franklin Inst 239:285–297

    Google Scholar 

  • Srivastava N (2005) A logistic regression model for predicting the occurrence of intense geomagnetic storms. Ann Geophys 23:2969–2974

    Google Scholar 

  • St Cyr OC, Plunkett SP, Michels DJ, Paswaters SE, Koomen MJ, Simnett GM, Thompson BJ, Gurman JB, Schwenn R, Webb DF, Hildner E, Lamy PL (2000) Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J Geophys Res 105:18169–18186

    Google Scholar 

  • Stone EC, Cohen CMS, Cook WR, Cummings AC, Gauld B, Kecman B, Leske RA, Mewaldt RA, Thayer MR, Dougherty BL, Grumm RL, Milliken BD, Radocinski RG, Wiedenbeck ME, Christian ER, Shuman S, Trexel H, Von Rosenvinge TT, Binns WR, Crary DJ, Dowkontt P, Epstein J, Hink PL, Klarmann J, Lijowski M, Olevitch MA (1998) The cosmic-ray isotope spectrometer for the Advanced Composition Explorer. Space Sci Rev 86:285–356

    Google Scholar 

  • Sugiara M, Kamei T (1991) Equatorial D st index 1957–1986. IAGA Bull. No. 40. ISGI Publ. Office, France, 246 pp

  • Summers D, Thorne RM (2003) Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res 108:1143. doi:10.1029/2002JA009489

    Google Scholar 

  • Sun W, Deehr CS, Fry CD, Dryer M, Smith Z, Akasofu SI (2008) Simulation of SMEI and STEREO-like views of the solar wind following the solar flares of 27–29 May 2003. Space weather 6:S03006. doi:10:1029/2006SW000298

    Google Scholar 

  • Surgiara M (1965) Ann Int Geophys Year 35:9–45

    Google Scholar 

  • Svestka Z (1976) Solar flares, Geophysics and Astrophysics Monographs Series, vol 8. D. Reidel, Dordrecht

    Google Scholar 

  • Svestka Z, Simon P (eds) (1976) Catalog of solar particle events 1955–1969, Astrophysics and Space Science Library. Reidel, Dordrecht

    Google Scholar 

  • Tascione TF (1994) Introduction to the space environment, 2nd edn. Krieger Publishing Company, Florida, p 164

    Google Scholar 

  • Thernisien AFR, Howard RA, Vourlidas A (2006) Modeling of flux rope coronal mass ejections. Astrophys J 652:763

    Google Scholar 

  • Tinsley BA, Hodges RR Jr, Rhorbaugh RP (1986) Monte Carlo models for the terrestrial exosphere over a solar cycle. J Geophys Res 91:13631

    Google Scholar 

  • Todd D (2000, March 6) Letter to Space News, p 12

  • Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, De Zeeuw DL, Hansen KC, Kane KJ, Manchester WB, Oehmke RC, Powell KG, Ridley AJ, Roussev II, Stout QF, Volberg O (2005) Space weather modeling framework: a new tool for the space science community. J Geophys Res 110. doi:10.1029/2005JA011126

  • Trakhtengerts VY, Rycroft MJ (2008) Whistler and Alfven mode cyclotron masers in space. Cambridge University Press, Cambridge, p 354

    Google Scholar 

  • Tribble AC (1995) The space environment: implications for spacecraft design. Princeton University Press, Princeton, p 204

    Google Scholar 

  • Trichtchenko L, Boteler DH (2001) Specification of geomagnetically induced electric fields and currents in pipelines. J Geophys Res 106:21039–21048

    Google Scholar 

  • Tripathi DK, Bothmer V, Cremades H (2004) The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions. Astron Astrophys 422:337

    Google Scholar 

  • Trivedi NB, Vitorello I et al (2007) Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: a case study. Space Weather 5:S04004. doi:10.1029/2006SW000282

    Google Scholar 

  • Tsubouchi K, Omura Y (2007) Long term occurrence probabilities of intense geomagnetic storm events. Space Weather 5:S12003. doi:10.1029/2007SW000329

    Google Scholar 

  • Tsurutani BT (2001) The interplanetary causes of magnetic storms, substorms and geomagnetic quiet. In: Daglis IA (ed) Space storms and space weather hazards. Kluwer, Dordrecht, pp 103–130

    Google Scholar 

  • Tsurutani BT, Gonzalez WD (1987) The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet Space Sci 35:40

    Google Scholar 

  • Tsurutani BT, Smith EJ, Gonzalez WD, Tang F, Akasofu SI (1988) Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J Geophys Res 93:8519–8531

    Google Scholar 

  • Tsurutani BT, Gonzalez WD, Gonzalez ALC, Tang F, Arballo JK, Okada M (1995a) Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J Geophys Res 100:21717

    Google Scholar 

  • Tsurutani BT, Ho CM, Arballo JK, Goldstein BE, Balogh A (1995b) Large amplitude IMF fluctuations in corotating interaction regions: Ulysses at mid latitudes. Geophys Res Lett 22:3397

    Google Scholar 

  • Tsurutani BT, Gonzalez WD, Gonzalez ALC, Guarnieri FL, Gopalswamy N, Grande M, Kamide Y, Kasahara Y, Lu G, Mann I, McPherron R, Soraas F, Vasyliunas V (2006) Corotating solar wind streams and recurrent geomagnetic activity. J Geophys Res 111:A07S01. doi:10.1029/2005JA011273

    Google Scholar 

  • Tu CY, Zhou C, Marsch E, Xia LD, Zhao L, Wang JX et al (2005) Solar wind origin in coronal funnels? Science 308:519. doi:0.1126/science.1109447

    Google Scholar 

  • Turner R (ed) (1996) Foundations of solar particle event risk management strategies, in findings of the risk management workshop for solar particle events, publication NASA Grant NAGW-4166. ANSER, Arlington

    Google Scholar 

  • Tverskaya LV, Pavlov NN, Blake JB, Selesnick RS, Fennell JF (2003) Predicting the L position of the storm-injected relativistic electron belt. Adv Space Res 31:1039–1044

    Google Scholar 

  • Tyasto MI, Danilova OA, Dorman LI, Dvornikov VM, Sdobnov VE (2008) On the possibility to check the magnetosphere’s model by CR: the strong geomagnetic storm in November 2003. Adv Space Res 42:1556–1563

    Google Scholar 

  • Ugarte-Urra I, Warren HP, Winebarger AR (2007) The magnetic topology of coronal mass ejection sources. Astrophys J 662:1293–1301

    Google Scholar 

  • Vainio R, Laitinen T (2007) Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence. Astrophys J 658:622. doi:10.1086/510284

    Google Scholar 

  • Vainio R, Laitinen T (2008) Simulations of coronal shock acceleration in self- generated turbulence. J Atmos Solar Terr Phys 70:467

    Google Scholar 

  • Vainio R, Desorgher L, Heynderickx D, Storini M, Flückiger E, Horne RB, Kovaltsov GA, Kudela K, Laurenza M, McKenna-Lawlor S, Rothkaehl H, Usoskin IG (2009) Dynamics of the earth’s particle radiation environment. Space Sci Rev 147:187–231. doi:10.1007/s11214-009-9496-7

    Google Scholar 

  • Valach F, Hejda P, Bochnı′cˇek J (2007) Geoeffectiveness of XRA events associated with RSP II and/or RSP IV estimated using the artificial neural network. Stud Geophys Geod 51:551–562

    Google Scholar 

  • Valach F, Revallo M, Bochnıcek J, Hejda P (2009) Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model. Space Weather 7:S04004. doi:10.1029/2008SW000421

    Google Scholar 

  • Vampola A (1987) The aerospace environment at high altitudes and its implications for spacecraft charging and communications. J Electrostat 20:21

    Google Scholar 

  • Van Allen JA, Frank LA (1959) Radiation around the earth to a radial distance of 107400 km. Nature 183:430

    Google Scholar 

  • Van Allen JA, Ludwig GH, Ray EC, McIlwain CE (1958) Observations of high intensity radiation by satellites 1958 Alpha and Gamma. Jet Propul 28:588–592

    Google Scholar 

  • Vandas M, Romashets EP, Watari S, Geranios A, Antoniadou E, Zacharopoulou O (2006) Camparison of force-freeflux rope model with observations of magnetic cloud. Adv Space Res 38:441–446

    Google Scholar 

  • Vashenyuk EV, Balabin YV, Gvozdevsky BB (2009) Characteristics of relativistic solar cosmic rays from GLE modeling studies. In: Proceedings of 31st ICRC, Lodz, paper icrc1304

  • Vassiliadis D (2007) Forecasting space weather. In: Bothmer V, Daglis IA (eds) Space weather: physics and effects. Springer, Praxis

  • Vasyliunas VM (1975) Theoretical models of magnetic field line merging. Rev Geophys Space Phys 13:303–336

    Google Scholar 

  • Velinov PIY, Mishev A (2007) The induced ionization by solar cosmic rays in the earth atmosphere-CORSIKA code simulations. C R Acad Bulg Sci 60:493–500

    Google Scholar 

  • Verma PL, Tiwari RK, Kumar Y, Nigam SK, Sharma AB, Khare N (2009) Halo coronal mass ejections: the cause of large Forbush decreases and Geomagnetic storms. In: Proceedings of 31st ICRC, Lodz, paper icrc0198

  • Viljanen A, Pirjola R (1994) Geomagnetically induced currents in the Finnish-high voltage power system. Surv Geophys 15:383

    Google Scholar 

  • Viljanen A, Pulkkinen A, Pirjola R, Pajunpää K, Posio P, Koistinen A (2006) Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system. Space Weather 4:S10004. doi:10.1029/2006SW000234

    Google Scholar 

  • Von Baeckman, Schwenk W, Prinz W (1997) Handbook of Cathodic corrosion protection, 3rd edn. Gulf Publishing Co., Houston

    Google Scholar 

  • Wagner WJ (1984) Coronal mass ejections. Annu Rev Astron Astrophys 22:267–289

    Google Scholar 

  • Wallerius A (1982) Solen Gav Sverige en Stromstot. Ny teknik Teknisk tidskrift 29:3

    Google Scholar 

  • Walt M (1994) Introduction to geomagnetically trapped radiation. Cambridge University Press, Cambridge, p 168

    Google Scholar 

  • Watari S (1997) The effect of the high-speed stream following the corotating interaction region on the geomagnetic activities. Ann Geophys 15:662–670. doi:10.1007/s00585-997-0662-5

    Google Scholar 

  • Watari S (2008) Forecasting solar cycle 24 using the relationship between cycle length and maximum sunspot number. Space Weather 6:S12003. doi:10.1029/2008SW000397

    Google Scholar 

  • Watermann J, Wintoft P, Sanahuja B, Saiz E et al (2009a) Models of solar wind structures and their interaction with the earth’s space environment. Space Sci Rev 147:233–270

    Google Scholar 

  • Watermann J, Vainio R, Lilensten J, Belehaki A, Messeroti M (2009b) The state of space weather scientific modeling—an introduction. Space Sci Rev 147:111–120

    Google Scholar 

  • Weaver JT (1994) Mathematical methods for geo-electromagnetic induction. Research Studies Press (Wiley), Taunton

  • Webb DF, Crooker NU, Plunkett SP, St Cyr OC (2001) SEPs: Space weather hazard in interplanetary space. In: Song P et al (eds) Space weather, vol 125, Geophysical Monograph. American Geophysical Union, Washington, pp 123–141

    Google Scholar 

  • Webb DF, Mizuno DR, Buffington A et al (2006) Solar mass ejection imager (SMEI) observations of coronal mass ejections (CMEs) in the heliosphere. J Geophys Res 111:A12101. doi:10.1029/2006JA011655

    Google Scholar 

  • Webb DF, Howard TA, Fry CD, Kuchar TA, Mizuno DR, Johnston JC, Jackson BV (2009) Studying geoeffective interplanetary coronal mass ejections between the sun and earth: space weather implications of solar mass ejection imager observations. Space Weather 7:S05002. doi:10.1029/2008SW000409

    Google Scholar 

  • Weigel RS, Detman T, Rigler EJ, Baker DN (2006) Decision theory and the analysis of rare event space weather forecasts. Space Weather 4:S05002. doi:10.1029/2005SW000157

    Google Scholar 

  • Wellenhof BH, Lichtenegger H, Collins J (2001) GPS theory and practice, 5th edn. Springer, ISBN 3-211-83534-2

  • White RS (1973) High-energy proton radiation belt. Rev Geophys 11:595–632

    Google Scholar 

  • Wik M, Viljanen A, Pirjola R, Pulkkinen A, Wintoft P, Lundstedt H (2008) Calculation of geomagnetically induced currents in the 400 kV power grids in southern Sweden. Space Weather 6:S07005. doi:10.1029/2007SW000343

    Google Scholar 

  • Williams DJ, Roelof EC, Mitchell DG (1992) Global magnetospheric imaging. Rev Geophys 30:183–208

    Google Scholar 

  • Wilson JW et al (eds) (1997) Shielding strategies for human space exploration: a workshop. Johnson Space Center, Houston, 6–8 Dec 1995

  • Wilson JW, Kim MHY, Shinn JL, Tai H, Cucinotta FA, Badhwar GD, Badavi FF, Atwell W (1999) Solar cycle variation and application to the space radiation environment, NASA/TP-1999-209369

  • Yashiro S, Gopalswamy N, Michalek G, St Cyr OC, Plunkett SP, Rich NB, Howard RA (2004) A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res 109:A07105. doi:10.1029/2003JA010282

    Google Scholar 

  • Zong QG, Fritz TA, Wilken B, Daly PW (2002) Energetic ions in the high latitude boundary layer of the magnetosphere-RAPID/cluster observation. In: Newell PT, Onsager TG (eds) The lower-latitude boundary layer. American Geophysical Union, Washington, pp 101–110

    Google Scholar 

  • Zurbuchen TH, Richardson IG (2006) In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci Rev 123:31–43

    Google Scholar 

Download references

Acknowledgments

AKS is grateful to the Department of Science and Technology (DST), Government of India for providing financial support as a research project (File no. SR/S4/AS/261/06). AKS, DS are also thankful to Indian Space Research Organisation (ISRO) for partial financial support under CAWSESS program. RPS acknowledges the facilities provided by the Head, Department of Physics, BHU, Varanasi. The authors express their thanks to the referee for many important comments and to Prof M. J. Rycroft’s suggestions and editorial attention, both of which have greatly improved the quality and the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Siingh, D. & Singh, R.P. Space Weather: Physics, Effects and Predictability. Surv Geophys 31, 581–638 (2010). https://doi.org/10.1007/s10712-010-9103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-010-9103-1

Keywords

Navigation