Skip to main content
Log in

A Review of Higher Order Ionospheric Refraction Effects on Dual Frequency GPS

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Higher order ionospheric effects are increasingly relevant as precision requirements on GPS data and products increase. The refractive index of the ionosphere is affected by its electron content and the magnetic field of the Earth, so the carrier phase of the GPS L1 and L2 signals is advanced and the modulated code delayed. Due to system design the polarisation is unaffected. Most of the effect is removed by expanding the refractive index as a series and eliminating the first term with a linear combination of the two signals. However, the higher order terms remain. Furthermore, transiting gradients in refractive index at a non-perpendicular angle causes signal bending. In addition to the initial geometric bending term, another term allows for the difference that the curvature makes in electron content along each signal. Varying approximations have been made for practical implementation, mainly to avoid the need for a vertical profile of electron density. The magnetic field may be modelled as a tilted co-centric dipole, or using more realistic models such as the International Geomagnetic Reference Field. The largest effect is from the second term in the expansion of the refractive index. Up to several cm on L2, it particularly affects z-translation, and satellite orbits and clocks in a global network of GPS stations. The third term is at the level of the errors in modelling the second order term, while the bending terms appear to be absorbed by tropospheric parameters. Modelling improvements are possible, and three frequency transmissions will allow new possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Anderson D, Fuller-Rowell T (1999) The ionosphere, space environment topics (SE-14) [Online]. Available at: http://www.swpc.noaa.gov/info/Iono.pdf. Accessed 10 Jan 2010

  • Appleton EV (1932) Wireless studies of the ionosphere. Proc Wirel Sect Inst Electr Eng 7(21):257–265

    Google Scholar 

  • Balanis CA (2005) Antenna theory—analysis and design, 3rd edn [Online]. Available at: http://knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1955&VerticalID=0. Accessed 7 Sept 2009

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscr Geod 18:280–289

    Google Scholar 

  • Bilitza D, Reinisch BW (2008) International Reference Ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609

    Article  Google Scholar 

  • Blewitt G, Hammond WC, Kreemer C, Plag HP, Stein S, Okal E (2009) GPS for real-time earthquake source determination and tsunami warning systems. J Geod 83(3–4):335–343

    Article  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics—electromagnetic theory of propagation interference and diffraction of light. Cambridge University Press, Cambridge

    Google Scholar 

  • Bouin MN, Wöppelmann G (2010) Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys J Int 180(1):193–209

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83(8):773–785

    Article  Google Scholar 

  • Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscr Geod 16:205–214

    Google Scholar 

  • Budden KG (1985) The propagation of radiowaves: the theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Burrell A, Bonito N, Carrano C (2009) Total electron content processing from GPS observations to facilitate ionospheric modeling. GPS Sol 13(2):83–95

    Article  Google Scholar 

  • Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46:RG1003. doi:10.1029/2006RG000212

    Article  Google Scholar 

  • Calais E, Mattioli G, DeMets C, Nocquet JM, Stein S, Newman A, Rydelek P (2005) Seismology: tectonic strain in plate interiors? Nature 438(7070):E9–E10

    Article  Google Scholar 

  • Cander LR (2008) Ionospheric research and space weather services. J Atmos Sol Terr Phys 70(15):1870–1878

    Article  Google Scholar 

  • Ciraolo L, Spalla P (1997) Comparison of ionospheric total electron content from the Navy Navigation Satellite System and the GPS. Radio Sci 32(7):1071–1080

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120

    Article  Google Scholar 

  • CODE (2007) Global ionospheric maps from the centre for orbit determination in Europe. http://aiuws.unibe.ch/ionosphere/mslm.pdf. Accessed 10 Feb 2010

  • Coïsson P, Radicella SM, Ciraolo L, Leitinger R, Nava B (2008) Global validation of IRI TEC for high and medium solar activity conditions. Adv Space Res 42(4):770–775

    Article  Google Scholar 

  • Datta-Barua S, Walter T, Blanch J, Enge P (2006) Bounding higher order ionosphere errors for the dual frequency GPS User. In: ION GNSS 19th international technical meeting of the satellite division. Fort Worth, TX, 26–29 Sept 2006

  • Datta-Barua S, Walter T, Blanch J, Enge P (2008) Bounding higher-order ionosphere errors for the dual-frequency GPS user. Radio Sci 43:RS5010. doi:10.1029/2007RS003772

    Article  Google Scholar 

  • Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, London

    Google Scholar 

  • Doherty P, Coster AJ, Murtagh W (2004) Space weather effects of October–November 2003. GPS Sol 8(4):267–271

    Article  Google Scholar 

  • Feltens J (2003) The activities of the Ionosphere Working Group of the International GPS Service (IGS). GPS Sol 7(1):41–46

    Google Scholar 

  • Fleury R, Clemente M, Carvalho F, Lassudrie-Duchesne P (2009) Modelling of ionospheric high-order errors for new generation GNSS. Ann Telecomm 64(9):615–623

    Article  Google Scholar 

  • Fowler CMR (1990) The solid Earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Fritsche M, Dietrich R, Knofel C, Rϋlke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32:L23311. doi:10.1029/2005GL02434223

    Article  Google Scholar 

  • Gherm VE, Novitsky R, Zernov N, Strangeways HJ, Ioannides RT (2006) On the limiting accuracy of range measurements for the three-frequency mode of operation of a satellite navigation system. In: 2nd Workshop on radio systems and ionospheric effects, COST action 296 mitigation of ionospheric effects on radio systems (MIERIS), Rennes, 3–7 Oct 2006

  • Groves PD, Harding SJ (2003) Ionosphere propagation error correction for Galileo. J Navig 56:45–50

    Article  Google Scholar 

  • Gu M, Brunner FK (1990) Theory of the two frequency dispersive range correction. Manuscr Geod 15:357–361

    Google Scholar 

  • Gulyaeva TL (2009) Linkage of the ionospheric peak electron density and height deduced from the topside sounding data. Adv Space Res 43(11):1794–1799

    Article  Google Scholar 

  • Hartmann GK, Leitinger R (1984) Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz. Bull Geod 58:109–136

    Article  Google Scholar 

  • Hartree DR (1931) The propagation of electromagnetic waves in a refracting medium in a magnetic field. Proc Camb Phil Soc 27:143–162. doi:10.1017/S0305004100009440

    Article  Google Scholar 

  • Hawarey M, Hobinger T, Schuh H (2005) Effects of the 2nd order ionospheric terms on VLBI measurements. Geophys Res Lett 32:L11304. doi:10.1029/2005GL022729

    Article  Google Scholar 

  • Hecht E (1998) Optics. Addison Wesley Longman, New York

    Google Scholar 

  • Hernández-Pajares M (2004) IGS Ionosphere WG status report: performance of IGS Ionosphere, TEC Maps. IGS Technical Meeting, Bern

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (2005) Towards a more realistic mapping function. URSI GA, New Delhi

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Ors R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112:B08417. doi:10.1029/2006JB004707

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2008) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275

    Article  Google Scholar 

  • Herring T (1983) The precision and accuracy of intercontinental distance determinations using radio interferometry. PhD thesis, Massachusetts Institute of Technology

  • Herring TA (1999) Geodetic applications of GPS. Proc IEEE 87(1):92–110

    Article  Google Scholar 

  • Hocke K (2008) Oscillations of global mean TEC. J Geophys Res 113:A04302. doi:10.1029/2007JA012798

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer, Wien

    Google Scholar 

  • Hoque M, Jakowski N (2007) Higher order ionospheric effects in precise GNSS positioning. J Geod 81(4):259–268

    Article  Google Scholar 

  • Hoque M, Jakowski N (2008a) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Sol 12(2):87–97

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2008b) Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43:RS5008. doi:10.1029/2007RS003817

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2010) Higher order ionospheric propagation effects on GPS radio occultation signals. Adv Space Res 46(2):162–173. doi:10.1016/j.asr.2010.02.013

    Article  Google Scholar 

  • Horvath I, Crozier S (2007) Software developed for obtaining GPS-derived total electron content values. Radio Sci 42:RS2002. doi:10.1029/2006RS003452

    Article  Google Scholar 

  • ICD-GPS-200 (2000) Interface control document ICD-GPS-200 Navstar GPS Space Segment/Navigation User Interfaces

  • IERS (2009) IERS conventions update: chapter 9. Working version updated 16 July 2009. International Earth Rotation Service

  • Imel DA (1994) Evaluation of the TOPEX/POSIEDON dual frequency ionosphere correction. J Geophys Res 99(C12):24895–24906

    Article  Google Scholar 

  • Jakowski N, Putz E, Spalla P (1990) Ionospheric storm characteristics deduced from satellite radio beacon observations at 3 European stations. Ann Geophys 8(5):343–351

    Google Scholar 

  • Jakowski N, Jungstand A, Lois L, Lazo B (1991) Night-time enhancements of the F2-layer ionization over Havana, Cuba. J Atmos Terr Phys 53(11–12):1131–1138

    Article  Google Scholar 

  • Jakowski N, Porsch F, Mayer G (1994) Ionosphere—induced ray-path bending effects in precision satellite positioning systems. Z Satell Position Navig Kommun SPN1/94:6–13

    Google Scholar 

  • Kamide Y, Chian AC-L (eds) (2007) Handbook of the solar-terrestrial environment. Springer, Berlin

    Google Scholar 

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. doi:10.1029/2003GL017639

    Article  Google Scholar 

  • Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics. International geophysics series, vol 96, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Kim BC, Tinin MV (2009) The association of the residual error of dual-frequency Global Navigation Satellite Systems with ionospheric turbulence parameters. J Atmos Sol Terr Phys 71(17–18):1967–1973

    Article  Google Scholar 

  • Kintner PM, Ledvina BM (2005) The ionosphere, radio navigation, and global navigation satellite systems. Adv Space Res 35(5):788–811

    Article  Google Scholar 

  • Kivelson MG, Russell CT (eds) (1995) Introduction to space physics. Cambridge University Press, New York

    Google Scholar 

  • Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ (eds) Global positioning system: theory and applications, vol 1. American Institute of Aeronautics and Astronautics Inc., Washington, pp 485–515

    Google Scholar 

  • Komjathy A (1997) Global ionospheric total electron content mapping using the global positioning system. University of New Brunswick Technical Report No. 188. PhD thesis, University of New Brunswick

  • Komjathy A, Langley RB (1996) The effect of shell height on high precision ionospheric modelling using GPS. In: Proceedings of the 1996 IGS workshop international GPS service for geodynamics, Silver Springs, MD, 19–21 Mar 1996

  • Langel RA (1987) The main field. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic Press, London, pp 249–267

    Google Scholar 

  • Langley RB (1998) Propagation of the GPS signals. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy. Springer, Berlin, pp 115–149

    Google Scholar 

  • Larson KM, Bilich A, Axelrad P (2007) Improving the precision of high-rate GPS. J Geophys Res 112:B05422. doi:10.1029/2006JB004367

    Article  Google Scholar 

  • Lassen H (1927) Über den einfluss des erdmagnetfeldes auf die fortpflanzung der elektrischen wellen der drahtlosen telegraphie in der atmosphare. Elektrische Nachrichten-Technik 4:324–334

    Google Scholar 

  • Leick A (2004) GPS satellite surveying. Wiley, New Jersey

    Google Scholar 

  • Leitinger R, Putz E (1988) Ionospheric refraction errors and observables. In: Brunner FK (ed) Atmospheric effects on geodetic space measurements. Monograph 12. School of Surveying, University of New South Wales, Kensington, NSW, pp 81–102

    Google Scholar 

  • Leitinger R, Jakowski N, Davies K, Hartmann GK, Feichter E (2000) Ionospheric electron content and space weather: some examples. Phys Chem Earth (A) 25(8):629–634

    Article  Google Scholar 

  • Liang M-C, Li K-F, Shia R-L, Yung YL (2008) Short-period solar cycle signals in the ionosphere observed by FORMOSAT-3/COSMIC. Geophys Res Lett 35:L15818. doi:10.1029/2008GL034433

    Article  Google Scholar 

  • Liu H, Stolle C, Watanabe S, Abe T, Rother M, Cooke DL (2007) Evaluation of the IRI model using CHAMP observations in polar and equatorial regions. Adv Space Res 39:904–909

    Article  Google Scholar 

  • Liu L, Zhao B, Wan W, Ning B, Zhang M-L, He M (2009) Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res 114:A02302. doi:10.1029/2008JA013819

    Article  Google Scholar 

  • Maus S, Macmillan S (2005) 10th Generation international reference field. EOS Trans 86(16):159

    Google Scholar 

  • Maus S, Macmillan S, Chernova T, Choi S, Dater D, Golovkov V, Lesur V, Lowes F, Lühr H, Mai W, McLean S, Olsen N, Rother M, Sabaka T, Thomson A, Zvereva T (2005) The 10th-generation international geomagnetic reference field. Geophys J Int 161(3):561–565

    Article  Google Scholar 

  • Mazzella AJ Jr (2009) Plasmasphere effects for GPS TEC measurements in North America. Radio Sci 44:RS5014. doi:10.1029/2009RS004186

    Article  Google Scholar 

  • Min K, Park J, Kim H, Kim V, Kil H, Lee J, Rentz S, Luhr H, Paxton L (2009) The 27-day modulation of the low-latitude ionosphere during a solar maximum. J Geophys Res 114:A04317. doi:10.1029/2008JA013881

    Article  Google Scholar 

  • Morton YT, van Graas F, Zhou Q, Herdtner J (2009a) Assessment of the higher order ionosphere error on position solutions. Navigation 56(3):185–193

    Google Scholar 

  • Morton, YT, Zhou, Q, van Graas, F (2009b) Assessment of second-order ionosphere error in GPS range observables using Arecibo incoherent scatter radar measurements. Radio Sci 44: RS1002, doi:10.1029/2008RS003888

  • Munekane H (2005) A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning. Geophys J Int 163(1):10–17

    Article  Google Scholar 

  • Mushini SC, Jayachandran PT, Langley RB, MacDougall JW (2009) Use of varying shell heights derived from ionosonde data in calculating vertical total electron content (TEC) using GPS—new method. Adv Space Res 44(11):1309–1313

    Article  Google Scholar 

  • Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. PhD thesis, Technische Universiteit, Delft

  • Odijk D (2003) Ionosphere-free phase combinations for modernized GPS. J Surv Eng 129(4):165–173

    Article  Google Scholar 

  • Palamartchouk K (2010) Apparent geocenter oscillations in global navigation satellite systems solutions caused by the ionospheric effect of second order. J Geophys Res 115(B3):B03415. doi:10.1029/2008jb006099

    Article  Google Scholar 

  • Papas CH (1965) Theory of electromagnetic wave propagation. McGraw-Hill, New York

    Google Scholar 

  • Parkinson WD (1983) Introduction to geomagnetism. Scottish Academic Press, Edinburgh

    Google Scholar 

  • Petrie EJ, King MA, Moore P, Lavallée DA (2010a) A first look at the effects of ionospheric signal bending on a globally processed GPS network. J Geod 84(8):491–499

    Article  Google Scholar 

  • Petrie EJ, King MA, Moore P, Lavallée DA (2010b) Higher-order ionospheric effects on the GPS reference frame and velocities. J Geophys Res 115(B3):B03417. doi:10.1029/2009jb006677

    Article  Google Scholar 

  • Pireaux S, Defraigne P, Wauters L, Bergeot N, Baire Q, Bruyninx C (2010) Higher-order ionospheric effects in GPS time and frequency transfer. GPS Sol 14(3):267–277. doi:10.1007/s10291-009-0152-1

    Article  Google Scholar 

  • Plag HP (2005) The GGOS as the backbone for global observing and local monitoring: a user driven perspective. J Geodyn 40(4–5):479–486

    Google Scholar 

  • Ratcliffe JA (1959) The magneto-ionic theory and its applications to the ionosphere—a monograph. Cambridge University Press, Cambridge

    Google Scholar 

  • Rawer K, Suchy K (1967) Radio-observations of the ionosphere. In: Flugge S (ed) Handbuch der physik, vol 49/2. Springer, Berlin, pp 1–537

    Google Scholar 

  • Rishbeth H (2003) Basic physics of the ionosphere. In: Barclay L (ed) Propagation of radiowaves. The Institution of Electrical Engineers, London, p 460

    Google Scholar 

  • Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159(2):521–547

    Article  Google Scholar 

  • Schaer S (1997) How to use CODE’s global ionosphere maps. Astronomical Institute, University of Berne

    Google Scholar 

  • Schaer S, Gurtner W, Feltens J (1998) IONEX: The IONosphere map EXchange format version 1. IGS AC workshop, Darmstadt, 9–11 February

  • Schunk RW, Nagy AF (2009) Ionospheres: physics, plasma physics, and chemistry. Cambridge atmospheric and space science series, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith DA, Araujo-Pradere EA, Minter C, Fuller-Rowell T (2008) A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere. Radio Sci 43:RS6008. doi:10.1029/2007RS003769

    Article  Google Scholar 

  • Stankov SM, Warnant R, Stegen K (2009) Trans-ionospheric GPS signal delay gradients observed over mid-latitude Europe during the geomagnetic storms of October–November 2003. Adv Space Res 43(9):1314–1324

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rϋlke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B05402. doi:10.1029/2005JB003747

    Article  Google Scholar 

  • Strangeways HJ, Ioannides RT (2002) Rigorous calculation of ionospheric effects on GPS Earth-satellite paths using a precise path determination method. Acta Geod Geophys 37(2–3):281–292

    Article  Google Scholar 

  • Todorova S, Hobiger T, Schuh H (2008) Using the Global Navigation Satellite System and satellite altimetry for combined Global Ionosphere Maps. Adv Space Res 42(4):727–736

    Article  Google Scholar 

  • Wang C, Hajj G, Pi X, Rosen IG, Wilson B (2004) Development of the global assimilative ionospheric model. Radio Sci 39:RS1S06. doi:10.1029/2002RS002854

    Article  Google Scholar 

  • Wang Z, Wu Y, Zhang K, Meng Y (2005) Triple-frequency method for high-order ionospheric refractive error modelling in gps modernization. J Glob Position Syst 4(1–2):291–295

    Article  Google Scholar 

  • Yeh KC, Liu CH (1972) Theory of ionospheric waves. Academic Press, London

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor and the two anonymous reviewers for their thoughtful reviews. Elizabeth Petrie was supported by the Natural Environment Research Council (NERC) and would like to thank Cathryn Mitchell for assistance with the literature on magneto-ionic theory and Ian Thomas for comments which improved the clarity of Sect. 3. Matt King was supported by NERC and RCUK Academic fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Petrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrie, E.J., Hernández-Pajares, M., Spalla, P. et al. A Review of Higher Order Ionospheric Refraction Effects on Dual Frequency GPS. Surv Geophys 32, 197–253 (2011). https://doi.org/10.1007/s10712-010-9105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-010-9105-z

Keywords

Navigation