Skip to main content
Log in

The Gravity Anomaly of a 2D Polygonal Body Having Density Contrast Given by Polynomial Functions

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

An analytical solution is presented for the gravity anomaly produced by a 2D body whose geometrical shape is arbitrary and where the density contrast is a polynomial function in both the horizontal and vertical directions. Approximating the real shape of the body by a polygon, the solution is expressed as sum of algebraic quantities that depend only upon the coordinates of the vertices of the polygon and upon the polynomial density function. The solution presented in the paper, which refers to a third-order polynomial function as a maximum, exhibits an intrinsic symmetry that naturally suggests its extension to the case of higher-order polynomials describing the density contrast. Furthermore, the gravity anomaly is evaluated at an arbitrary point that does not necessarily coincide with the origin of the reference frame in which the density function is assigned. Invoking recent results of potential theory, the solution derived in the paper is shown to be singularity-free and numerically robust. The accuracy and effectiveness of the proposed approach is witnessed by the numerical comparisons with examples derived from the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Aydemir A, Ates A, Bilim F, Buyuksarac A, Bektas O (2014) Evaluation of gravity and aeromagnetic anomalies for the deep structure and possibility of hydrocarbon potential of the region surrounding Lake Van, Eastern Anatolia, Turkey. Surv Geophys 35:431–448

    Article  Google Scholar 

  • Banerjee B, DasGupta SP (1977) Gravitational attraction of a rectangular parallelepiped. Geophysics 42:1053–1055

    Article  Google Scholar 

  • Barnett CT (1976) Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41:1353–1364

    Article  Google Scholar 

  • Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J R Astron Soc 3:63–67

    Article  Google Scholar 

  • Cady JW (1980) Calculation of gravity and magnetic anomalies of finite length right polygonal prisms. Geophysics 45:1507–1512

    Article  Google Scholar 

  • Cai Y, Wang CY (2005) Fast finite-element calculation of gravity anomaly in complex geological regions. Geophys J Int 162:696–708

    Article  Google Scholar 

  • Chai Y, Hinze WJ (1988) Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53:837–845

    Article  Google Scholar 

  • Chakravarthi V, Raghuram HM, Singh SB (2002) 3-D forward gravity modeling of basement interfaces above which the density contrast varies continuously with depth. Comput Geosci 28:53–57

    Article  Google Scholar 

  • Chakravarthi V, Sundararajan N (2007) 3D gravity inversion of basement relief: a depth-dependent density approach. Geophysics 72:I23–I32

    Article  Google Scholar 

  • Chappell A, Kusznir N (2008) An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density–depth relationships. Geophys Prospect 56:249–258

    Article  Google Scholar 

  • Cordell L (1973) Gravity analysis using an exponential density depth function—San Jacinto graben, California. Geophysics 38:684–690

    Article  Google Scholar 

  • D’Urso MG, Russo P (2002) A new algorithm for point-in polygon test. Surv Rev 284:410–422

    Article  Google Scholar 

  • D’Urso MG (2012) New expressions of the gravitational potential and its derivates for the prism. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) Hotine–Marussi international symposium on mathematical geodesy, 7th edn. Springer, Berlin, pp 251–256

    Chapter  Google Scholar 

  • D’Urso MG (2013a) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geod 87:239–252

    Article  Google Scholar 

  • D’Urso MG, Marmo F (2013b) On a generalized Love’s problem. Comput Geosci 61:144–151

    Article  Google Scholar 

  • D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geod 88:13–29

    Article  Google Scholar 

  • D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Cel Mech Dyn Astron 120:349–372

    Article  Google Scholar 

  • D’Urso MG, Marmo F (2015a) Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Zeit Ang Math Mech 95:91–110

    Article  Google Scholar 

  • D’Urso MG (2015b) A remark on the computation of the gravitational potential of masses with linearly varying density. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) Hotine–Marussi international symposium on mathematical geodesy, 8th edn. Springer, Berlin (in press)

  • D’Urso MG, Trotta S (2015c) Comparative assessment of linear and bilinear prism-based strategies for terrain correction computations. J Geod. doi:10.1007/s00190-014-0770-4

  • Gallardo-Delgado LA, Pérez-Flores MA, Gómez-Treviño E (2003) A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics 68:949–959

    Article  Google Scholar 

  • García-Abdeslem J (1992) Gravitational attraction of a rectangular prism with depth dependent density. Geophysics 57:470–473

    Article  Google Scholar 

  • García-Abdeslem J (2005a) Gravitational attraction of a rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70:J39–J42

    Article  Google Scholar 

  • García-Abdeslem J, Romo JM, Gómez-Treviño E, Ramírez-Hernández J, Esparza-Hernández FJ, Flores-Luna CF (2005b) A constrained 2D gravity model of the Sebastián Vizcaíno Basin, Baja California Sur, Mexico. Geophys Prospect 53:755–765

    Article  Google Scholar 

  • Gendzwill J (1970) The gradational density contrast as a gravity interpretation model. Geophysics 35:270–278

    Article  Google Scholar 

  • Golizdra GY (1981) Calculation of the gravitational field of a polyhedra. Izv Earth Phys 17:625–628 (English translation)

    Google Scholar 

  • Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53:1096–1108

    Article  Google Scholar 

  • Guspí F (1990) General 2D gravity inversion with density contrast varying with depth. Geoexploration 26:253–265

    Article  Google Scholar 

  • Hamayun P, Prutkin I, Tenzer R (2009) The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J Geod 83:1163–1170

    Article  Google Scholar 

  • Hansen RO (1999) An analytical expression for the gravity field of a polyhedral body with linearly varying density. Geophysics 64:75–77

    Article  Google Scholar 

  • Holstein H, Ketteridge B (1996) Gravimetric analysis of uniform polyhedra. Geophysics 61:357–364

    Article  Google Scholar 

  • Holstein H (2003) Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 68:157–167

    Article  Google Scholar 

  • Hubbert MK (1948) A line-integral method of computing the gravimetric effects of two-dimensional masses. Geophysics 13:215–225

    Article  Google Scholar 

  • Jacoby W, Smilde PL (2009) Gravity interpretation—fundamentals and application of gravity inversion and geological interpretation. Springer, Berlin

    Google Scholar 

  • Jiancheng H, Wenbin S (2010) Comparative study on two methods for calculating the gravitational potential of a prism. Geospat Inf Sci 13:60–64

    Article  Google Scholar 

  • Johnson LR, Litehiser JJ (1972) A method for computing the gravitational attraction of three dimensional bodies in a spherical or ellipsoinal earth. J Geophys Res 77:6999–7009

    Article  Google Scholar 

  • Kwok YK (1991a) Singularities in gravity computation for vertical cylinders and prisms. Geophys J Int 104:1–10

    Article  Google Scholar 

  • Kwok YK (1991b) Gravity gradient tensors due to a polyhedron with polygonal facets. Geophys Prospect 39:435–443

    Article  Google Scholar 

  • Li X, Chouteau M (1998) Three-dimensional gravity modelling in all spaces. Surv Geophys 19:339–368

    Article  Google Scholar 

  • Litinsky VA (1989) Concept of effective density: key to gravity depth determinations for sedimentary basins. Geophysics 54:1474–1482

    Article  Google Scholar 

  • Martín-Atienza B, García-Abdeslem J (1999) 2-D gravity modeling with analytically defined geometry and quadratic polynomial density functions. Geophysics 64:1730–1734

    Article  Google Scholar 

  • Montana CJ, Mickus KL, Peeples WJ (1992) Program to calculate the gravitational field and gravity gradient tensor resulting from a system of right rectangular prisms. Comput Geosci 18:587–602

    Article  Google Scholar 

  • Mostafa ME (2008) Finite cube elements method for calculating gravity anomaly and structural index of solid and fractal bodies with defined boundaries. Geophys J Int 172:887–902

    Article  Google Scholar 

  • Murthy IVR, Rao DB (1979) Gravity anomalies of two-dimensional bodies of irregular cross-section with density contrast varying with depth. Geophysics 44:1525–1530

    Article  Google Scholar 

  • Murthy IVR, Rao DB, Ramakrishna P (1989) Gravity anomalies of three dimensional bodies with a variable density contrast. Pure Appl Geophys 30:711–719

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74:553–560

    Article  Google Scholar 

  • Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies. Geophysics 44:730–741

    Article  Google Scholar 

  • Pan JJ (1989) Gravity anomalies of irregularly shaped two-dimensional bodies with constant horizontal density gradient. Geophysics 54:528–530

    Article  Google Scholar 

  • Paul MK (1974) The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure Appl Geophys 112:553–561

    Article  Google Scholar 

  • Petrović S (1996) Determination of the potential of homogeneous polyhedral bodies using line integrals. J Geod 71:44–52

    Article  Google Scholar 

  • Plouff D (1975) Derivation of formulas and FORTRAN programs to compute gravity anomalies of prisms. Natl. tech. inf. serv. no. PB-243-526. US Department of Commerce, Springfield

  • Plouff D (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics 41:727–741

    Article  Google Scholar 

  • Pohanka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36:733–751

    Article  Google Scholar 

  • Pohanka V (1998) Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys Prospect 46:391–404

    Article  Google Scholar 

  • Rao DB (1985) Analysis of gravity anomalies over an inclined fault with quadratic density function. Pure Appl Geophys 123:250–260

    Article  Google Scholar 

  • Rao DB (1986) Modeling of sedimentary basins from gravity anomalies with variable density contrast. Geophys J R Astron Soc 84:207–212

    Article  Google Scholar 

  • Rao DB (1990) Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic function. Geophysics 55:226–231

    Article  Google Scholar 

  • Rao DB, Prakash MJ, Babu RN (1990) 3D and 2 \(1/2\) modeling of gravity anomalies with variable density contrast. Geophys Prospect 38:411–422

    Article  Google Scholar 

  • Rao CV, Chakravarthi V, Raju ML (1994) Forward modelling: gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions. Comput Geosci 20:873–880

    Article  Google Scholar 

  • Rosati L, Marmo F (2014) Closed-form expressions of the thermo-mechanical fields induced by a uniform heat source acting over an isotropic half-space. Int J Heat Mass Transf 75:272–283

    Article  Google Scholar 

  • Ruotoistenmäki T (1992) The gravity anomaly of two-dimensional sources with continuous density distribution and bounded by continuous surfaces. Geophysics 57:623–628

    Article  Google Scholar 

  • Sessa S, D’Urso MG (2013) Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas. In: Proceedings of the 11th international conference (ICOSSAR 2013), pp 30163–30169

  • Silva JB, Costa DCL, Barbosa VCF (2006) Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics 71:J51–J58

    Article  Google Scholar 

  • Strakhov VN (1978) Use of the methods of the theory of functions of a complex variable in the solution of three-dimensional direct problems of gravimetry and magnetometry. Dokl Akad Nauk 243:70–73

    Google Scholar 

  • Strakhov VN, Lapina MI, Yefimov AB (1986) A solution to forward problems in gravity and magnetism with new analytical expression for the field elements of standard approximating body. Izv Earth Phys 22:471–482 (English translation)

    Google Scholar 

  • Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res 64:49–59

    Article  Google Scholar 

  • Tang KT (2006) Mathematical methods for engineers and scientists. Springer, Berlin

    Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16:193–207

    Article  Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust–mantle interface and mantle–lithosphere structure. Surv Geophys 33:817–839

    Article  Google Scholar 

  • Tenzer R, Novák P, Hamayun, Vajda P (2012c) Spectral expressions for modelling the gravitational field of the Earth’s crust density structure. Stud Geophys Geod 56:141–152

    Article  Google Scholar 

  • Tsoulis D (2000) A note on the gravitational field of the right rectangular prism. Boll Geod Sci Aff LIX–1:21–35

    Google Scholar 

  • Tsoulis D, Petrović S (2001) On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66:535–539

    Article  Google Scholar 

  • Tsoulis D (2012) Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77:F1–F11

    Article  Google Scholar 

  • Waldvogel J (1979) The Newtonian potential of homogeneous polyhedra. J Appl Math Phys 30:388–398

    Article  Google Scholar 

  • Werner RA (1994) The gravitational potential of a homogeneous polyhedron. Celest Mech Dyn Astron 59:253–278

    Article  Google Scholar 

  • Werner RA, Scheeres DJ (1997) Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest Mech Dyn Astron 65:313–344

    Google Scholar 

  • Won IJ, Bevis M (1987) Computing the gravitational and magnetic anomalies due to a polygon: algorithms and FORTRAN subroutines. Geophysics 52:232–238

    Article  Google Scholar 

  • Zhang J, Zhong B, Zhou X, Dai Y (2001) Gravity anomalies of 2D bodies with variable density contrast. Geophysics 66:809–813

    Article  Google Scholar 

  • Zhou X (2008) 2D vector gravity potential and line integrals for the gravity anomaly caused by a 2D mass of depth-dependent density contrast. Geophysics 73:I43–I50

    Article  Google Scholar 

  • Zhou X (2009a) General line integrals for gravity anomalies of irregular 2D masses with horizontally and vertically dependent density contrast. Geophysics 74:I1–I7

    Article  Google Scholar 

  • Zhou X (2009b) 3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast. Geophysics 74:I43–I53

    Article  Google Scholar 

  • Zhou X (2010) Analytical solution of gravity anomaly of irregular 2D masses with density contrast varying as a 2D polynomial function. Geophysics 75:I11–I19

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to express his deep gratitude to the Editor-in-Chief, Prof. M.J. Rycroft, and to the three anonymous reviewers for careful suggestions and useful comments that resulted in an improved version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. D’Urso.

Appendices

Appendix 1: Some Useful Differential Identities

We prove hereafter some differential identities that are useful for the derivations illustrated in the main body of the paper; they are reported in the same order in which they are required.

Let us begin with the component expression of the divergence of the rank-three tensor

$$\begin{aligned} \mathrm{div}[\psi (\mathbf{a}\otimes \mathbf{b}\otimes \mathbf{c})]_{ij}=\psi (\mathbf{a}_i\mathbf{b}_j\mathbf{c}_k)_{/k} \end{aligned}$$
(117)

where \(\mathbf{a}\), \(\mathbf{b}\), \(\mathbf{c}\) (\(\psi\)) are vector (scalar) differentiable fields and \((\cdot )_{/k}\) means derivation with respect to the \(k\)th variable. Applying the chain rule to (117), Tang (2006), one obtains

$$\begin{aligned} \psi (\mathbf{a}_i\mathbf{b}_j\mathbf{c}_k)_{/k}&= \psi _{/k}\mathbf{a}_i\mathbf{b}_j\mathbf{c}_k + \psi \mathbf{a}_{i/k}\mathbf{b}_j\mathbf{c}_k +\psi \mathbf{a}_i\mathbf{b}_{j/k}\mathbf{c}_k +\psi \mathbf{a}_i\mathbf{b}_j\mathbf{c}_{k/k}\nonumber \\&= (\mathbf{a}\otimes \mathbf{b}\otimes \mathbf{c})_{ijk}(\mathrm{grad}\psi )_{k} + \psi [(\mathrm{grad}\,\mathbf{a})\mathbf{c}]_{i}\mathbf{b}_j\nonumber \\&\quad +\,\psi \mathbf{a}_i[(\mathrm{grad}\,\mathbf{b})\mathbf{c}]_{j}+\psi (\mathbf{a}\otimes \mathbf{b})_{ij}\mathrm{div}\,\mathbf{c}\end{aligned}$$
(118)

Thus, combining (117) and (118), one has

$$\begin{aligned} \mathrm{div}[\psi (\mathbf{a}\otimes \mathbf{b}\otimes \mathbf{c})]&= (\mathbf{a}\otimes \mathbf{b}\otimes \mathbf{c})\mathrm{grad}\,\psi + \psi [(\mathrm{grad}\,\mathbf{a})\mathbf{c}]\otimes \mathbf{b}\nonumber \\&\quad +\,\psi \mathbf{a}\otimes [(\mathrm{grad}\,\mathbf{b})\mathbf{c}]+\psi (\mathbf{a}\otimes \mathbf{b})\mathrm{div}\,\mathbf{c}\end{aligned}$$
(119)

A further useful identity concerns the gradient of a scalar field expressed as scalar product of two vector fields

$$\begin{aligned} \mathrm{grad}\, (\mathbf{a}\cdot \mathbf{b})= [\mathrm{grad}\,\mathbf{a}]^\mathrm{t}\mathbf{b}+[\mathrm{grad}\,\mathbf{b}]^\mathrm{t} \mathbf{a} \end{aligned}$$
(120)

where \((\cdot )^\mathrm{t}\) stands for transpose. It stems from the relation

$$\begin{aligned}{}[\mathrm{grad}\, (\mathbf{a}\cdot \mathbf{b})]_{i}=(\mathbf{a}_j\mathbf{b}_j)_{/i} \end{aligned}$$
(121)

Actually, carrying out the derivations in the previous expression yields

$$\begin{aligned} (\mathbf{a}_j\mathbf{b}_j)_{/i} = \mathbf{a}_{j/i}\mathbf{b}_j + \mathbf{a}_j\mathbf{b}_{j/i} = [(\mathrm{grad}\,\mathbf{a})^\mathrm{t}]_{ij}\mathbf{b}_j + [(\mathrm{grad}\,\mathbf{b})^\mathrm{t}]_{ij}\mathbf{a}_j, \end{aligned}$$
(122)

which represents the component form of (120).

Appendix 2: Recursive Computation of Integrals

Application of formula (56) requires the analytical computation of integrals of the kind

$$\begin{aligned} I_{k}=\int \limits _0^1\frac{x^k}{p x^2 + 2 q x + u}\hbox {d}x \end{aligned}$$
(123)

where \(p>0\) and the discriminant of the denominator, i.e., \(\varDelta =q^2-pu\), is assumed to be negative. Hence, the quadratic function \(p x^2 + 2 q x + u\) is always positive on the real interval [0, 1]. The case of a null discriminant \(\varDelta\) will be directly addressed in Sect. 4 where the evaluation of \(I_{ki}\), which makes use of the formulas derived hereafter for \(\varDelta < 0\), will be detailed.

As previously shown by Zhou (2010), the generic integral (123) can be computed recursively as a function of two integrals, namely

$$\begin{aligned} I_{0}=\int \limits _0^1\frac{1}{p x^2 + 2 q x + u}\hbox {d}x = \frac{1}{\sqrt{-\varDelta }}\left[ \hbox { arctan}\frac{p+q}{\sqrt{-\varDelta }} - \hbox { arctan}\frac{q}{\sqrt{-\varDelta }}\right] \end{aligned}$$
(124)

and

$$\begin{aligned} I_{1}=\int \limits _0^1\frac{x}{p x^2 + 2 q x + u}\hbox {d}x = \frac{1}{2p}\hbox {log}\frac{p+2q+u}{u} - \frac{q}{p} I_0 \end{aligned}$$
(125)

Both results can be obtained, after some manipulation, by setting \(t=x+q/p\) in the integrand functions above. To make the paper self-contained, we rephrase the result given in Zhou (2010)

$$\begin{aligned} J_{k}&= \int \frac{x^k}{p x^2 + 2 q x + u}\hbox {d}x = \frac{x^{k-1}}{p(k-1)} -\frac{2q}{p}\int \frac{x^{k-1}}{p x^2 + 2 q x + u}\hbox {d}x\nonumber \\&\quad -\, \frac{u}{p} \int \frac{x^{k-2}}{p x^2 + 2 q x + u}dx \end{aligned}$$
(126)

where \(k>1\) and the terminology of this paper has been adopted.

For instance, if \(k=2\), one has

$$\begin{aligned} J_{2}&= \int \frac{x^2}{p x^2 + 2 q x + u}\hbox {d}x = \frac{1}{p}\int \frac{px^2+(2qx+u-2qx-u)}{p x^2 + 2 q x + u}\hbox {d}x \nonumber \\&= \frac{1}{p}\left[ \int \hbox {d}x - \int \frac{2qx+u}{p x^2 + 2 q x + u}\hbox {d}x \right] \nonumber \\&= \frac{1}{p}\left[ \int \hbox {d}x - 2q\int \frac{x}{p x^2 + 2 q x + u}\hbox {d}x - u\int \frac{\hbox {d}x}{p x^2 + 2 q x + u} \right] \nonumber \\&= \frac{1}{p}[x-2qJ_1-uJ_0] \end{aligned}$$
(127)

Analogously,

$$J_{3}= \frac{1}{p}\left[ \frac{x^2}{2}-2qJ_2-uJ_1\right] = \frac{1}{p}\left[ \frac{x^2}{2}-\frac{2qx}{p}+\frac{4q^2-pu}{p}J_1 + \frac{2qu}{p}J_0 \right]$$
(128)

and

$$\begin{aligned} J_{4}= \frac{x^3}{3p}-\frac{q}{p^2}x^2 +\frac{4q^2-pu}{p^3}x - \frac{2q(4q^2-2pu)}{p^3}J_1 - \frac{u(4q^2-pu)}{p^3}J_0 \end{aligned}$$
(129)

Hence,

$$\begin{aligned} I_{2}&= \frac{1}{p}[1-2qI_1-uI_0] \end{aligned}$$
(130)
$$\begin{aligned} I_{3}&= \frac{1}{p}\left[ \frac{1}{2}-\frac{2q}{p}+\frac{4q^2-pu}{p}I_1 + \frac{2qu}{p}I_0 \right] \end{aligned}$$
(131)

and

$$\begin{aligned} I_{4}= \frac{1}{p} \left[ \frac{1}{3}-\frac{q}{p} +\frac{4q^2-pu}{p^2} - \frac{2q(4q^2-2pu)}{p^2}I_1 - \frac{u(4q^2-pu)}{p^2}I_0 \right] \end{aligned}$$
(132)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Urso, M.G. The Gravity Anomaly of a 2D Polygonal Body Having Density Contrast Given by Polynomial Functions. Surv Geophys 36, 391–425 (2015). https://doi.org/10.1007/s10712-015-9317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9317-3

Keywords

Navigation