Skip to main content
Log in

Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We analytically evaluate the gravity anomaly associated with a polyhedral body having an arbitrary geometrical shape and a polynomial density contrast in both the horizontal and vertical directions. The gravity anomaly is evaluated at an arbitrary point that does not necessarily coincide with the origin of the reference frame in which the density function is assigned. Density contrast is assumed to be a third-order polynomial as a maximum but the general approach exploited in the paper can be easily extended to higher-order polynomial functions. Invoking recent results of potential theory, the solution derived in the paper is shown to be singularity-free and is expressed as a sum of algebraic quantities that only depend upon the 3D coordinates of the polyhedron vertices and upon the polynomial density function. The accuracy, robustness and effectiveness of the proposed approach are illustrated by numerical comparisons with examples derived from the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abtahi SM, Pedersen LB, Kamm J, Kalscheuer T (2016) Consistency investigation, vertical gravity estimation and inversion of airborne gravity gradient tensor data - A case study from northern Sweden. Geophysics 81(3):B65–B76

    Article  Google Scholar 

  • Aydemir A, Ates A, Bilim F, Buyuksarac A, Bektas O (2014) Evaluation of gravity and aeromagnetic anomalies for the deep structure and possibility of hydrocarbon potential of the region surrounding Lake Van. Eastern Anatolia, Turkey. Surv Geophys 35:431–448

    Article  Google Scholar 

  • Bajracharya S, Sideris M (2004) The Rudzki inversion gravimetric reduction scheme in geoid determination. J Geod 78(4–5):272–282

    Article  Google Scholar 

  • Banerjee B, Das Gupta SP (1977) Gravitational attraction of a rectangular parallelepiped. Geophysics 42:1053–1055

    Article  Google Scholar 

  • Barnett CT (1976) Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41:1353–1364

    Article  Google Scholar 

  • Beiki M, Pedersen LB (2010) Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics 75(6):I37–I49

    Article  Google Scholar 

  • Blakely RJ (2010) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J R Astron Soc 3:63–67

    Article  Google Scholar 

  • Bowen RM, Wang CC (2006) Introduction to vectors and tensors, vol 2: vector and tensor analysis. Available electronically from http://hdl.handle.net/1969.1/3609

  • Cady JW (1980) Calculation of gravity and magnetic anomalies of finite length right polygonal prisms. Geophysics 45:1507–1512

    Article  Google Scholar 

  • Cai Y, Wang CY (2005) Fast finite-element calculation of gravity anomaly in complex geological regions. Geophys J Int 162:696–708

    Article  Google Scholar 

  • Chai Y, Hinze WJ (1988) Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53:837–845

    Article  Google Scholar 

  • Chakravarthi V, Raghuram HM, Singh SB (2002) 3-D forward gravity modeling of basement interfaces above which the density contrast varies continuously with depth. Comput Geosci 28:53–57

    Article  Google Scholar 

  • Chakravarthi V, Sundararajan N (2007) 3D gravity inversion of basement relief: a depth-dependent density approach. Geophysics 72:I23–I32

    Article  Google Scholar 

  • Chapin DA (1998) Gravity instruments: past, present, future. Lead Edge 17:100–112

    Article  Google Scholar 

  • Chappell A, Kusznir N (2008) An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density-depth relationships. Geophys Prospect 56:249–258

    Article  Google Scholar 

  • Conway JT (2015) Analytical solutions from vector potentials for the gravitational field of a general polyhedron. Celest Mech Dyn Astron 121:17–38

    Article  Google Scholar 

  • Cordell L (1973) Gravity analysis using an exponential density depth function-San Jacinto graben, California. Geophysics 38:684–690

    Article  Google Scholar 

  • Dransfield M (2007) Airborne gravity gradiometry in the search for mineral deposits. In: Proceedings of exploration: fifth decennial international conference on mineral exploration, pp 341–354

  • D’Urso MG, Russo P (2002) A new algorithm for point-in polygon test. Surv Rev 284:410–422

    Article  Google Scholar 

  • D’Urso MG, Marmo F (2009) Vertical stresses due to linearly distributed pressures over polygonal domains. In: ComGeo I, first international symposium on computational geomechanics. Juan les Pins, France, pp 283-289

  • D’Urso MG (2012) New expressions of the gravitational potential and its derivates for the prism. In: Hotine-Marussi international symposium on mathematical geodesy, 7rd. Sneeuw N, Novák P, Crespi M, Sansò F. Springer, Berlin pp 251–256

  • D’Urso MG (2013a) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geod 87:239–252

    Article  Google Scholar 

  • D’Urso MG, Marmo F (2013b) On a generalized Love’s problem. Comput Geosci 61:144–151

    Article  Google Scholar 

  • D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geod 88:13–29

    Article  Google Scholar 

  • D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Celest Mech Dyn Astron 120:349–372

    Article  Google Scholar 

  • D’Urso MG, Marmo F (2015a) Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Z Angew Math Mech 95:91–110

    Article  Google Scholar 

  • D’Urso MG, Trotta S (2015b) Comparative assessment of linear and bilinear prism-based strategies for terrain correction computations. J Geod 89:199–215

    Article  Google Scholar 

  • D’Urso MG (2015c) The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv Geophys 36:391–425

    Article  Google Scholar 

  • D’Urso MG (2016) Some remark on the computation of the gravitational potential of masses with linearly varying density. In: VIII Hotine-Marussi international symposium on mathematical geodesy, 8rd. Sneeuw N, Novák P, Crespi M, Sansò F. Rome

  • Gallardo-Delgado LA, Pérez-Flores MA, Gómez-Treviño E (2003) A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics 68:949–959

    Article  Google Scholar 

  • García-Abdeslem J (1992) Gravitational attraction of a rectangular prism with depth dependent density. Geophysics 57:470–473

    Article  Google Scholar 

  • García-Abdeslem J (2005) Gravitational attraction of a rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70:J39–J42

    Article  Google Scholar 

  • Gendzwill J (1970) The gradational density contrast as a gravity interpretation model. Geophysics 35:270–278

    Article  Google Scholar 

  • Golizdra GY (1981) Calculation of the gravitational field of a polyhedra. Izv Earth Phys 17:625–628 (English Translation)

    Google Scholar 

  • Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53:1096–1108

    Article  Google Scholar 

  • Guspí F (1990) General 2D gravity inversion with density contrast varying with depth. Geoexploration 26:253–265

    Article  Google Scholar 

  • Hamayun P, Prutkin I, Tenzer R (2009) The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J Geod 83:1163–1170

    Article  Google Scholar 

  • Hansen RO (1999) An analytical expression for the gravity field of a polyhedral body with linearly varying density. Geophysics 64:75–77

    Article  Google Scholar 

  • Hansen RO (2001) Gravity and magnetic methods at the turn of the millennium. Geophysics 66:36–37

    Article  Google Scholar 

  • Holstein H, Ketteridge B (1996) Gravimetric analysis of uniform polyhedra. Geophysics 61:357–364

    Article  Google Scholar 

  • Holstein H (2003) Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 68:157–167

    Article  Google Scholar 

  • Hubbert MK (1948) A line-integral method of computing the gravimetric effects of two-dimensional masses. Geophysics 13:215–225

    Article  Google Scholar 

  • Jacoby W, Smilde PL (2009) Gravity interpretation—fundamentals and application of gravity inversion and geological interpretation. Springer, Berlin

    Google Scholar 

  • Jahandari H, Farquharson CG (2013) Forward modeling of gravity data using finite-volume and finite element methods on unstructured grids. Geophysics 78(3):G69–G80

    Article  Google Scholar 

  • Jekeli C (2006) Airborne gradiometry error analysis. Surv Geophys 27:257–275

    Article  Google Scholar 

  • Jiancheng H, Wenbin S (2010) Comparative study on two methods for calculating the gravitational potential of a prism. Geo-spat Inf Sci 13:60–64

    Article  Google Scholar 

  • Johnson LR, Litehiser JJ (1972) A method for computing the gravitational attraction of three dimensional bodies in a spherical or ellipsoinal earth. J Geophys Res 77:6999–7009

    Article  Google Scholar 

  • Kamm J, Lundin IA, Bastani M, Sadeghi M, Pedersen LB (2015) Joint inversion of gravity, magnetic, and petrophysical data a case study from a gabbro intrusion in Boden, Sweden. Geophysics 80(5):B131–B152

    Article  Google Scholar 

  • Kingdon R, Vaníček P, Santos M (2009) Modeling topographical density for geoid determination. Can J Earth Sci 46:571–585

    Article  Google Scholar 

  • Kwok YK (1991a) Singularities in gravity computation for vertical cylinders and prisms. Geophys J Int 104:1–10

    Article  Google Scholar 

  • Kwok YK (1991b) Gravity gradient tensors due to a polyhedron with polygonal facets. Geophys Prospect 39:435–443

    Article  Google Scholar 

  • LaFehr TR (1980) History of geophysical exploration. Gravity method. Geophysics 45:1634–1639

    Article  Google Scholar 

  • Li X, Chouteau M (1998) Three-dimensional gravity modelling in all spaces. Surv Geophys 19:339–368

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63(1):109–119

    Article  Google Scholar 

  • Litinsky VA (1989) Concept of effective density: key to gravity depth determinations for sedimentary basins. Geophysics 54:1474–1482

    Article  Google Scholar 

  • Marmo F, Rosati L (2016) A general approach to the solution of Boussinesq’s problem for polynomial pressures acting over polygonal domains. J Elast 122:75–112

    Article  Google Scholar 

  • Marmo F, Sessa S, Rosati L (2016a) Analytical solution of the Cerruti problem under linearly distributed horizontal pressures over polygonal domains. J Elast 124:27–56

    Article  Google Scholar 

  • Marmo F, Toraldo F, Rosati L (2016b) Analytical formulas and design charts for transversely isotropic half-spaces subject to linearly distributed pressures. Meccanica 51:2909–2928

    Article  Google Scholar 

  • Marmo F, Toraldo F, Rosati L (2017) Transversely isotropic half-spaces subject to surface pressures. Int J Solids Struct 104–105:35–49

    Article  Google Scholar 

  • Martín-Atienza B, García-Abdeslem J (1999) 2-D gravity modeling with analytically defined geometry and quadratic polynomial density functions. Geophysics 64:1730–1734

    Article  Google Scholar 

  • Martinez C, Li Y, Krahenbuhl R, Braga MA (2013) 3D inversion of airborne gravity gradiometry data in mineral exploration: a case study in the Quadrilatero Ferrfero, Brazil. Geophysics 78(1):B1–B11

    Article  Google Scholar 

  • Moorkamp M, Heincke B, Jegen M, Roberts AW, Hobbs RW (2011) A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys J Int 184(1):477–493

    Article  Google Scholar 

  • Montana CJ, Mickus KL, Peeples WJ (1992) Program to calculate the gravitational field and gravity gradient tensor resulting from a system of right rectangular prisms. Comput Geosci 18:587–602

    Article  Google Scholar 

  • Mostafa ME (2008) Finite cube elements method for calculating gravity anomaly and structural index of solid and fractal bodies with defined boundaries. Geophys J Int 172:887–902

    Article  Google Scholar 

  • Murthy IVR, Rao DB (1979) Gravity anomalies of two-dimensional bodies of irregular cross-section with density contrast varying with depth. Geophysics 44:1525–1530

    Article  Google Scholar 

  • Murthy IVR, Rao DB, Ramakrishna P (1989) Gravity anomalies of three dimensional bodies with a variable density contrast. Pure Appl Geophys 30:711–719

    Article  Google Scholar 

  • Nabighian MN, Ander ME, Grauch VJS, Hansen RO, LaFehr TR, Li Y, Pearson WC, Peirce JW, Phillips JD, Ruder ME (2005) Historical development of the gravity method in exploration. Geophysics 70:63–89

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74:553–560

    Article  Google Scholar 

  • Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies. Geophysics 44:730–741

    Article  Google Scholar 

  • Pan JJ (1989) Gravity anomalies of irregularly shaped two-dimensional bodies with constant horizontal density gradient. Geophysics 54:528–530

    Article  Google Scholar 

  • Paterson NR, Reeves CV (1985) Applications of gravity and magnetic surveys. The state of the art in 1985. Geophysics 50:2558–2594

    Article  Google Scholar 

  • Paul MK (1974) The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure Appl Geophys 112:553–561

    Article  Google Scholar 

  • Petrović S (1996) Determination of the potential of homogeneous polyhedral bodies using line integrals. J Geod 71:44–52

    Article  Google Scholar 

  • Plouff D (1975) Derivation of formulas and FORTRAN programs to compute gravity anomalies of prisms. Nat Tech Inf Serv No PB-243-526. US Dept of Commerce, Springfield, VA

  • Plouff D (1976) Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics 41:727–741

    Article  Google Scholar 

  • Pohanka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36:733–751

    Article  Google Scholar 

  • Pohanka V (1998) Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys Prospect 46:391–404

    Article  Google Scholar 

  • Rao DB (1985) Analysis of gravity anomalies over an inclined fault with quadratic density function. Pure Appl Geophys 123:250–260

    Article  Google Scholar 

  • Rao DB (1986) Modeling of sedimentary basins from gravity anomalies with variable density contrast. Geophys J R Astron Soc 84:207–212

    Article  Google Scholar 

  • Rao DB (1990) Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic function. Geophysics 55:226–231

    Article  Google Scholar 

  • Rao DB, Prakash MJ, Babu RN (1990) 3D and 2 \(1/2\) modeling of gravity anomalies with variable density contrast. Geophys Prospect 38:411–422

    Article  Google Scholar 

  • Rao CV, Chakravarthi V, Raju ML (1994) Forward modelling: gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions. Comput Geosci 20:873–880

    Article  Google Scholar 

  • Ren Z, Chen C, Pan K, Kalscheuer T, Maurer H, Tang J (2017) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts. Surv Geophys 38:479–502

    Article  Google Scholar 

  • Roberts AW, Hobbs RW, Goldstein M, Moorkamp M, Jegen M, Heincke B (2016) Joint stochastic constraint of a large data set from a salt dome. Geophysics 81(2):ID1–ID24

    Article  Google Scholar 

  • Rosati L, Marmo F (2014) Closed-form expressions of the thermo-mechanical fields induced by a uniform heat source acting over an isotropic half-space. Int J Heat Mass Transf 75:272–283

    Article  Google Scholar 

  • Ruotoistenmäki T (1992) The gravity anomaly of two-dimensional sources with continuous density distribution and bounded by continuous surfaces. Geophysics 57:623–628

    Article  Google Scholar 

  • Sessa S, D’Urso MG (2013) Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas. In: Proc 11th Int Conf ICOSSAR 2013, pp 30163–30169

  • Silva JB, Costa DCL, Barbosa VCF (2006) Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics 71:J51–J58

    Article  Google Scholar 

  • Sorokin LV (1951) Gravimetry and gravimetrical prospecting. State Technology Publishing, Moscow (in Russian)

    Google Scholar 

  • Strakhov VN (1978) Use of the methods of the theory of functions of a complex variable in the solution of three-dimensional direct problems of gravimetry and magnetometry. Dokl Akad Nauk 243:70–73

    Google Scholar 

  • Strakhov VN, Lapina MI, Yefimov AB (1986) A solution to forward problems in gravity and magnetism with new analytical expression for the field elements of standard approximating body. Izv Earth Phys 22:471–482 (English Translation)

    Google Scholar 

  • Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res 64:49–59

    Article  Google Scholar 

  • Tang KT (2006) Mathematical methods for engineers and scientists. Springer, Berlin

    Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33:817–839

    Article  Google Scholar 

  • Trotta S, Marmo F, Rosati L (2016a) Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity. Compos Part B 106:48–58

    Article  Google Scholar 

  • Trotta S, Marmo F, Rosati L (2016) Evaluation of the Eshelby tensor for polygonal inclusions. Composit Part B. doi:10.1016/j.compositesb.2016.10.018

    Google Scholar 

  • Tsoulis D (2000) A note on the gravitational field of the right rectangular prism. Boll Geod Sci Affin LIX–1:21–35

    Google Scholar 

  • Tsoulis D, Petrović S (2001) On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66:535–539

    Article  Google Scholar 

  • Tsoulis D (2012) Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77:F1–F11

    Article  Google Scholar 

  • Vaníček P, Tenzer R, Sjöberg LE, Martinec Z, Featherstone WE (2004) New views of the spherical Bouguer gravity anomaly. Geophys J Int 159:460–472

    Article  Google Scholar 

  • Waldvogel J (1979) The Newtonian potential of homogeneous polyhedra. J Appl Math Phys 30:388–398

    Article  Google Scholar 

  • Werner RA (1994) The gravitational potential of a homogeneous polyhedron. Celest Mech Dyn Astron 59:253–278

    Article  Google Scholar 

  • Werner RA, Scheeres DJ (1997) Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest Mech Dyn Astron 65:313–344

    Article  Google Scholar 

  • Werner RA (2017) The solid angle hidden in polyhedron gravitation formulations. J Geod 91:307–328

    Article  Google Scholar 

  • Won IJ, Bevis M (1987) Computing the gravitational and magnetic anomalies due to a polygon: algorithms and Fortran subroutines. Geophysics 52:232–238

    Article  Google Scholar 

  • Zhang J, Zhong B, Zhou X, Dai Y (2001) Gravity anomalies of 2D bodies with variable density contrast. Geophysics 66:809–813

    Article  Google Scholar 

  • Zhang HL, Ravat D, Marangoni YR, Hu XY (2014) NAV-Edge: edge detection of potential-field sources using normalized anisotropy variance. Geophysics 79(3):J43–J53

    Article  Google Scholar 

  • Zhdanov MS (2002) Geophysical inverse theory and regularization problems, vol 36. Elsevier, Amsterdam

    Book  Google Scholar 

  • Zhou X (2008) 2D vector gravity potential and line integrals for the gravity anomaly caused by a 2D mass of depth-dependent density contrast. Geophysics 73:I43–I50

    Article  Google Scholar 

  • Zhou X (2009a) General line integrals for gravity anomalies of irregular 2D masses with horizontally and vertically dependent density contrast. Geophysics 74:I1–I7

    Article  Google Scholar 

  • Zhou X (2009b) 3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast. Geophysics 74:I43–I53

    Article  Google Scholar 

  • Zhou X (2010) Analytical solution of gravity anomaly of irregular 2D masses with density contrast varying as a 2D polynomial function. Geophysics 75:I11–I19

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their deep gratitude to the Editor-in-Chief and to three anonymous reviewers for careful reading and useful comments which resulted in an improved version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. D’Urso.

Appendices

Appendix 1: Algebraic Expression of Integrals

We are going to show that the 2D integrals

$$\begin{aligned} \int \limits _{F_i} \frac{[\otimes {\varvec{\rho }}_i,m]}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}{\rm d}A_i \quad m\in [0,4] \end{aligned}$$
(167)

can be evaluated analytically. As a matter of fact, we only need to evaluate the integrals for \(m=3\) and \(m=4\)

$$\begin{aligned} {\mathfrak {C}}_{F_i}= \int \limits _{F_i} \frac{ {\varvec{\rho }}_i \otimes {\varvec{\rho }}_i \otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}} {\rm d}A_i\qquad {\mathfrak {D}}_{F_i}= \int \limits _{F_i} \frac{{\varvec{\rho }}_i \otimes {\varvec{\rho }}_i \otimes {\varvec{\rho }}_i \otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}} {\rm d}A_i\,, \end{aligned}$$
(168)

since the additional ones in (167) have been already computed in D’Urso (2013a, 2014a, b). For completeness, these last ones are reported in Appendix 2.

A further integral, namely

$$\begin{aligned} {\varvec{\varPsi }}_{F_i}= \int \limits _{F_i}\frac{{\varvec{\rho }}_i \otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} {\rm d}A_i\,, \end{aligned}$$
(169)

required for the computation of the integrals (168), will be dealt with at the end of this Appendix.

The rationale for evaluating the integrals (168) is to first apply the generalized Gauss’ theorem D’Urso (2013a, 2014a) to transform them into 1D integrals and, subsequently, to compute such integrals by means of algebraic expressions depending upon the 2D coordinates of the vertices that define the face \(F_i\).

In order to apply Gauss’ theorem to the integrals in (168), let us first prove the identity

$$\begin{aligned} {\text {grad}}\left[ \varphi \,( \mathbf {a}\otimes \mathbf {b})\right] = (\mathbf {a}\otimes \mathbf {b})\otimes {\text {grad}}\varphi + \varphi \, {\text {grad}}\mathbf {a}\otimes \mathbf {b}+ \varphi \, \mathbf {a}\otimes {\text {grad}}\mathbf {b}, \end{aligned}$$
(170)

holding for scalar \(\varphi\) and vector \(( \mathbf {a}, \mathbf {b})\) differentiable fields.

It can be easily verified by applying the chain rule to the ijk component of the third-order tensor on the left-hand side

$$\begin{aligned} \left\{ {\text {grad}}\left[ \varphi \,( \mathbf {a}\otimes \mathbf {b})\right] \right\} _{jkq}= \left( \varphi \, a_j b_k\right) _{/q} =\varphi _{/q}\,a_j\,b_k + \varphi \,a_{j/q} \, b_{k} + \varphi \,a_{j} \,b_{k/q}\,. \end{aligned}$$
(171)

In a similar fashion, one can prove the further differential identity involving fourth-order tensors

$$\begin{aligned} \begin{array}{cc} {\text {grad}}\left[ \varphi \,( \mathbf {a}\otimes \mathbf {b}\otimes {\mathbf {c}})\right] = (\mathbf {a}\otimes \mathbf {b}\otimes {\mathbf {c}}) {\text {grad}}\varphi + \varphi \, {\text {grad}}\mathbf {a}\otimes \mathbf {b}\otimes {\mathbf {c}}+ \varphi \, \mathbf {a}\otimes {\text {grad}}\mathbf {b}\otimes {\mathbf {c}}+\varphi \, \mathbf {a}\otimes \mathbf {b}\otimes {\text {grad}}{\mathbf {c}}\,. \end{array} \end{aligned}$$
(172)

Let us now apply the identity (171) as follows

$$\begin{aligned} \left[ {\text {grad}}\left( \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}\right) \right] _{jkq} = -\left[ \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}\right] _{jkq} + \frac{({\varvec{\rho }}_i)_{j/q}({\varvec{\rho }}_i)_k}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}+ \frac{({\varvec{\rho }}_i)_{j}({\varvec{\rho }}_i)_{k/q}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} \end{aligned}$$
(173)

since

$$\begin{aligned} {\text {grad}}\left[ \frac{1}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}\right] = -\frac{{\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}\,. \end{aligned}$$
(174)

Thus, being \(({\varvec{\rho }}_i)_{j/q}=\delta _{jq}\) we infer from (173)

$$\begin{aligned} {\text {grad}}\left( \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}\right) = -\frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}} + \frac{\mathbf {I}_{2{\rm D}} \otimes _{23}{\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}+ \frac{{\varvec{\rho }}_i\otimes \mathbf {I}_{2{\rm D}}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} \end{aligned}$$
(175)

where \(\mathbf {I}_{2{\rm D}}\) is the 2D identity tensor and \(\otimes _{23}\) denotes the tensor product obtained by interchanging the second and third index of the rank-three tensor \(\mathbf {I}_{2{\rm D}}\otimes {\varvec{\rho }}_i\).

The integral over \(F_i\) of the first addend in the formula above can be transformed into a boundary integral by exploiting the differential identity (Bowen and Wang 2006)

$$\begin{aligned} \int _\varOmega {\text {grad}}\,\mathbf {S}{\rm d}V = \int _{\partial \varOmega } \mathbf {S}\otimes \mathbf {n}{\rm d}A \end{aligned}$$
(176)

where \(\mathbf {S}\) is a continuous tensor field.

Thus, integrating over \(F_i\) the previous relation and recalling the definition (64) one has

$$\begin{aligned} \int \limits _{F_i} \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i }{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}{\rm d}A_i& = -\int \limits _{\partial {F_i}} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{\rm d}s_i + \mathbf {I}_{2{\rm D}}\otimes _{23}{\varvec{\psi }}_{F_i}+ {\varvec{\psi }}_{F_i}\otimes \mathbf {I}_{2{\rm D}} \end{aligned}$$
(177)

where \({\varvec{\nu }}\) is the unit normal pointing outwards the boundary \(\partial F_i\) of the i-th face \(F_i\) of the polyhedron.

Hence, the first integral on the right-hand side of (177) becomes

$$\begin{aligned} \int \limits _{\partial {F_i}} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{\rm d}s_i =\sum _{j=1}^{N_{E_i}}\int \limits _{0}^{l_j} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i){\rm d}s_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}\otimes {\varvec{\nu }}_j \end{aligned}$$
(178)

since \({\varvec{\nu }}\) is constant on each of the \(N_{E_i}\) edges belonging to \(\partial F_i\).

Recalling (68) and (73), formula (178) becomes

$$\begin{aligned} \int \limits _{\partial {F_i}} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{\rm d}s_i =\sum _{j=1}^{N_{E_i}}\int \limits _{0}^{1} \frac{\hat{{\varvec{\rho }}}_i(\lambda _j)\otimes \hat{{\varvec{\rho }}}_i(\lambda _j)d\lambda _j}{\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2}}\otimes \Delta {\varvec{\rho }}_{j}^\perp \end{aligned}$$
(179)

and the integral on the right-hand side can be further transformed by defining

$$\begin{aligned} \mathbf {E}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j}={\varvec{\rho }}_j\otimes {\varvec{\rho }}_j\quad \mathbf {E}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}={\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j+\Delta {\varvec{\rho }}_j\otimes {\varvec{\rho }}_j\quad \mathbf {E}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}=\Delta {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j\,. \end{aligned}$$
(180)

Actually, recalling the parametrization (67) one has

$$\begin{aligned}&\hat{{\varvec{\rho }}}_i(\lambda _j)\otimes \hat{{\varvec{\rho }}}_i(\lambda _j)=\mathbf {E}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ \lambda _j \mathbf {E}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ \lambda _j^2\mathbf {E}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\,, \end{aligned}$$
(181)
$$\begin{aligned}& \int \limits _{0}^{1} \frac{\hat{{\varvec{\rho }}}_i(\lambda _j)\otimes \hat{{\varvec{\rho }}}_i(\lambda _j)d\lambda _j}{\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2}} = I_{0j}\,\mathbf {E}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ I_{1j}\,\mathbf {E}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ I_{2j}\,\mathbf {E}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j} \end{aligned}$$
(182)

where the explicit expression of the integrals

$$\begin{aligned} \begin{array}{rr} I_{0j}= \int \limits _{0}^{1} \frac{d\lambda _j}{\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2}} &{} \qquad I_{1j}=\int \limits _{0}^{1} \frac{\lambda _j d\lambda _j}{\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2}} \\ \\ I_{2j}=\int \limits _{0}^{1} \frac{\lambda _j^2 d\lambda _j}{\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2}} &{} \\ \end{array} \end{aligned}$$
(183)

is provided in Appendix 2.

In conclusion, it turns out to be

$$\begin{aligned} \int \limits _{\partial {F}} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{\rm d}s_i= \sum _{j=1}^{N_{E_i}} \left[ I_{0j}\,\mathbf {E}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ I_{1j}\,\mathbf {E}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ I_{2j}\,\mathbf {E}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\right] \otimes \Delta {\varvec{\rho }}_{j}^\perp \,, \end{aligned}$$
(184)

so that the integral of interest can be computed as follows on account of (177)

$$\begin{aligned} {\mathfrak {C}}_{F_i}=\int \limits _{F_i} \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i }{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}{\rm d}A_i &= -\sum _{j=1}^{N_{E_i}} \left[ I_{0j}\,\mathbf {E}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ I_{1j}\,\mathbf {E}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ I_{2j}\,\mathbf {E}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\right] \otimes \Delta {\varvec{\rho }}_{j}^\perp \\ &\quad+ \mathbf {I}_{2{\rm D}}\otimes _{23}{\varvec{\psi }}_{F_i} + {\varvec{\psi }}_{F_i}\otimes \mathbf {I}_{2{\rm D}} \end{aligned}$$
(185)

where the expression of \({\varvec{\psi }}_{F_i}\) as an explicit function of the position vectors defining the boundary of \(F_i\) is provided at the end of this Appendix.

Also of interest is the composition of the third-order tensor above with the vector \({\varvec{\kappa }}_i\) since it appears in the expressions (47), (50) and (49). For this end, let us first notice that

$$\begin{aligned} \left[ \left( \mathbf {I}_{2{\rm D}}\otimes _{23}{\varvec{\psi }}_{F_i}\right) \;{\varvec{\kappa }}_i\right] _{jk} &=\left( \mathbf {I}_{2{\rm D}}\otimes _{23}{\varvec{\psi }}_{F_i}\right) _{jkp} \left( {\varvec{\kappa }}_i\right) _p = I_{jp}\left( {\varvec{\psi }}_{F_i}\right) _k \left( {\varvec{\kappa }}_i\right) _p\\ \\&=\delta _{jp} \left( {\varvec{\kappa }}_i\right) _p \left( {\varvec{\psi }}_{F_i}\right) _k = \left( {\varvec{\kappa }}_i\right) _j \left( {\varvec{\psi }}_{F_i}\right) _k =\left( {\varvec{\kappa }}_i\otimes {\varvec{\psi }}_{F_i}\right) _{jk}. \end{aligned}$$
(186)

Hence

$$\begin{aligned} {\mathfrak {C}}_{F_i}{\varvec{\kappa }}_i =\int \limits _{F_i} \frac{({\varvec{\rho }}_i\cdot {\varvec{\kappa }}_i)({\varvec{\rho }}_i\otimes {\varvec{\rho }}_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}{\rm d}A_i &= -\sum _{j=1}^{N_{E_i}} \left( {\varvec{\kappa }}_i\cdot \Delta {\varvec{\rho }}_{j}^\perp \right) \left( I_{0j}\,\mathbf {E}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ I_{1j}\,\mathbf {E}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ I_{2j}\,\mathbf {E}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\right) \\&\quad + {\varvec{\kappa }}_i\otimes {\varvec{\psi }}_{F_i} + {\varvec{\psi }}_{F_i}\otimes {\varvec{\kappa }}_i \end{aligned}$$
(187)

so that the right-hand side fulfills the symmetry of the tensor on the left-hand side of the previous expression.

To evaluate analytically the second integral in (168), we exploit the identity (172) to get

$$\begin{aligned} \left[ {\text {grad}}\left( \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}\right) \right] _{jkpq} &= -\left[ \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}\right] _{jkpq} + \frac{\delta _{jq}({\varvec{\rho }}_i \otimes {\varvec{\rho }}_i)_{kp}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} \\ &\quad+\frac{\delta _{kq}({\varvec{\rho }}_i \otimes {\varvec{\rho }}_i)_{jp}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} +\frac{\delta _{pq}({\varvec{\rho }}_i \otimes {\varvec{\rho }}_i)_{jk}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}\,, \end{aligned}$$
(188)

or equivalently

$$\begin{aligned} {\text {grad}}\left( \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}\right) = &-\frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}} + \frac{\mathbf {I}_{2{\rm D}} \otimes _{24}({\varvec{\rho }}_i\otimes {\varvec{\rho }}_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} \\& +\frac{({\varvec{\rho }}_i\otimes {\varvec{\rho }}_i) \otimes _{23}\mathbf {I}_{2{\rm D}}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} +\frac{({\varvec{\rho }}_i\otimes {\varvec{\rho }}_i) \otimes \mathbf {I}_{2{\rm D}}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} \end{aligned}$$
(189)

where \(\otimes _{24}\) denotes the tensor product obtained by interchanging the second and fourth index of the rank-four tensor \(\mathbf {I}_{2{\rm D}}\otimes ({\varvec{\rho }}_i\otimes {\varvec{\rho }}_i)\).

Integrating the previous relation over \(F_i\) and applying Gauss’ theorem yields

$$\begin{aligned} {\mathfrak {D}}_{F_i}=\int \limits _{F_i} \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i \otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}{\rm d}A_i &= -\int \limits _{\partial {F_i}} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{\rm d}s_i \\& + \mathbf {I}_{2{\rm D}}\otimes _{24}{\varvec{\varPsi }}_{F_i} + {\varvec{\varPsi }}_{F_i}\otimes _{23}\mathbf {I}_{2{\rm D}} +{\varvec{\varPsi }}_{F_i}\otimes \mathbf {I}_{2{\rm D}} \end{aligned}$$
(190)

where \({\varvec{\varPsi }}_{F_i}\) is analytically evaluated in formula (208) of Appendix 2.

In view of the ensuing developments, we further set

$$\begin{aligned}&{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,{\varvec{\rho }}_j}={\varvec{\rho }}_j\otimes {\varvec{\rho }}_j\otimes {\varvec{\rho }}_j\qquad {\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}={\varvec{\rho }}_j\otimes {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j+{\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j\otimes {\varvec{\rho }}_j+ \Delta {\varvec{\rho }}_j\otimes {\varvec{\rho }}_j\otimes {\varvec{\rho }}_j \end{aligned}$$
(191)
$$\begin{aligned}&{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}={\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j+\Delta {\varvec{\rho }}_j\otimes {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j+ \Delta {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j\otimes {\varvec{\rho }}_j \end{aligned}$$
(192)
$$\begin{aligned}&{\mathbf{\mathbb{E}}}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}=\Delta {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_j \end{aligned}$$
(193)

yielding

$$\begin{aligned} \hat{{\varvec{\rho }}}_i(\lambda _j)\otimes \hat{{\varvec{\rho }}}_i(\lambda _j)\otimes \hat{{\varvec{\rho }}}_i(\lambda _j)={\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ \lambda _j{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ \lambda _j^2 {\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ \lambda _j^3{\mathbf{\mathbb{E}}}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\,. \end{aligned}$$
(194)

Accordingly, the integral on the right-hand side in (190) becomes

$$\begin{aligned} \int \limits _{\partial {F_i}} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{\rm d}s_i &= \sum _{j=1}^{N_{E_i}}\int \limits _{0}^{1}\left\{ \frac{\hat{{\varvec{\rho }}}_i(\lambda _j)\otimes \hat{{\varvec{\rho }}}_i(\lambda _j)\otimes \hat{{\varvec{\rho }}}_i(\lambda _j)d\lambda _j}{\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2}}\otimes \Delta {\varvec{\rho }}_{j}^\perp \right\} \\ & \begin{aligned}=&-\sum _{j=1}^{N_{E_i}}\left[ I_{0j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ I_{1j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j} \right. \\&\left. +\,I_{2j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ I_{3j}\,{\mathbf{\mathbb{E}}}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\right] \otimes \Delta {\varvec{\rho }}_{j}^\perp \end{aligned}\end{aligned}$$
(195)

where the integrals \(I_{0j}\), \(I_{1j}\), \(I_{2j}\) and \(I_{3j}\) are explicitly evaluated in Appendix 2.

In conclusion one has

$$\begin{aligned} \int \limits _{\partial {F_i}} \frac{{\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i)}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{\rm d}s_i =& \sum _{j=1}^{N_{E_i}} \left[ I_{0j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ I_{1j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j} \right. \\&\left. +\,I_{2j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+ I_{3j}\,{\mathbf{\mathbb{E}}}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\right] \otimes \Delta {\varvec{\rho }}_{j}^\perp \\& + \mathbf {I}_{2{\rm D}}\otimes _{24}{\varvec{\varPsi }}_{F_i} + {\varvec{\varPsi }}_{F_i}\otimes _{23}\mathbf {I}_{2{\rm D}} +{\varvec{\varPsi }}_{F_i}\otimes \mathbf {I}_{2{\rm D}}\,. \end{aligned}$$
(196)

The composition of the previous integral with \({\varvec{\kappa }}_i\), a quantity that is needed in (175) and (to be displayed), yields a third-order tensor. The contribution to the jkp component of this tensor provided by the tensor product \({\varvec{\varPsi }}_{F_i}\otimes _{23}\mathbf {I}_{2{\rm D}}\) is given by

$$\begin{aligned} \left[ \left( {\varvec{\varPsi }}_{F_i}\otimes _{23}\mathbf {I}_{2{\rm D}}\right) \;{\varvec{\kappa }}_i\right] _{jkp} &=\left( {\varvec{\varPsi }}_{F_i}\otimes _{23}\mathbf {I}_{2{\rm D}}\right) _{jkpq} \left( {\varvec{\kappa }}_i\right) _q = \left( {\varvec{\varPsi }}_{F_i}\right) _{jp} \left( \delta _{kq}\right) \left( {\varvec{\kappa }}_i\right) _q\\ \\ & =\left( {\varvec{\varPsi }}_{F_i}\right) _{jp}\left( {\varvec{\kappa }}_i\right) _k =\left( {\varvec{\varPsi }}_{F_i}\otimes _{23}{\varvec{\kappa }}_i\right) _{jkp}. \end{aligned}$$
(197)

Analogously

$$\begin{aligned} \left[ \left( \mathbf {I}_{2{\rm D}}\otimes _{24}{\varvec{\varPsi }}_{F_i}\right) \;{\varvec{\kappa }}_i\right] _{jkp} &=\left( \mathbf {I}_{2{\rm D}}\otimes _{24}{\varvec{\varPsi }}_{F_i}\right) _{jkpq} \left( {\varvec{\kappa }}_i\right) _q = \left( \delta _{jq}\right) \left( {\varvec{\varPsi }}_{F_i}\right) _{pk} \left( {\varvec{\kappa }}_i\right) _q\\ \\ &{} =\left( {\varvec{\kappa }}_i\right) _j\left( {\varvec{\varPsi }}_{F_i}\right) _{pk}=\left( {\varvec{\kappa }}_i\right) _j\left( {\varvec{\varPsi }}_{F_i}\right) _{kp} =\left( {\varvec{\kappa }}_i\otimes {\varvec{\varPsi }}_{F_i} \right) _{jkp} \end{aligned}$$
(198)

where the identity \(\left( {\varvec{\varPsi }}_{F_i}\right) _{pk}=\left( {\varvec{\varPsi }}_{F_i}\right) _{kp}\) stems from the symmetry of \({\varvec{\varPsi }}_{F_i}\). Accordingly, we infer from (190) and (196)

$$\begin{aligned} {\mathfrak {D}}_{F_i}{\varvec{\kappa }}_i= \int \limits _{F_i} \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i\otimes {\varvec{\rho }}_i{\rm d}A_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}}{\varvec{\kappa }}_i & = -\sum _{j=1}^{N_{E_i}} \left( {\varvec{\kappa }}_i\cdot \Delta {\varvec{\rho }}_{j}^\perp \right) \left( I_{0j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,{\varvec{\rho }}_j}+ I_{1j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j} \right. \\&\left. \quad +\,I_{2j}\,{\mathbf{\mathbb{E}}}_{{\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}+I_{3j}\,{\mathbf{\mathbb{E}}}_{\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j\,\Delta {\varvec{\rho }}_j}\right) \\&\quad +{\varvec{\varPsi }}_{F_i}\otimes {\varvec{\kappa }}_i + {\varvec{\varPsi }}_{F_i}\otimes _{23}{\varvec{\kappa }}_i +{\varvec{\kappa }}_i\otimes {\varvec{\varPsi }}_{F_i}\,. \end{aligned}$$
(199)

The expression (185) for \({\mathfrak {C}}_{F_i}\) and (190) for \({\mathfrak {D}}_{F_i}\) requires the computation of the integral \({\varvec{\varPsi }}_{F_i}\) defined in formula (169); it is evaluated analytically by invoking the differential identity

$$\begin{aligned} {\text {grad}}\left[ \varphi \mathbf {a}\right] =\mathbf {a}\otimes {\text {grad}}\varphi + \varphi \,{\text {grad}}\mathbf {a} \end{aligned}$$
(200)

holding for differentiable scalar \((\varphi )\) and vector \((\mathbf {a})\) fields. Actually, applying the previous identity as follows

$$\begin{aligned} {\text {grad}}\left[ ({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{1/2}{\varvec{\rho }}_i\right] =\frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{1/2}} + ({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{1/2}\mathbf {I}_{2{\rm D}}\,, \end{aligned}$$
(201)

integrating over \(F_i\) and setting

$$\begin{aligned} \iota _{F_i} = \int \limits _{F_i}\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2}{\rm d}A_i \end{aligned}$$
(202)

one has

$$\begin{aligned} {\varvec{\varPsi }}_{F_i}= \int \limits _{\partial F_i}\left[ {\varvec{\rho }}_i(s_i)\cdot {\varvec{\rho }}_i(s_i)+d_i^2\right] ^{1/2}{\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}_i(s_i){\rm d}s_i- \iota _{F_i} \mathbf {I}_{2{\rm D}}. \end{aligned}$$
(203)

To compute the domain integral (202), we apply the differential identity

$$\begin{aligned} {\text {div}}\left[ \varphi \mathbf {a}\right] ={\text {grad}}\varphi \cdot \mathbf {a}+ \varphi \,{\text {div}}\mathbf {a} \end{aligned}$$
(204)

to the vector field \(\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2}{\varvec{\rho }}_i\) to get

$$\begin{aligned} {\text {div}}\left[ \left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2}{\varvec{\rho }}_i\right] =\frac{{\varvec{\rho }}_i\cdot {\varvec{\rho }}_i}{\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2}} + 2\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2}\,. \end{aligned}$$
(205)

Adding and subtracting \(d_i^2\) to the numerator yields

$$\begin{aligned} {\text {div}}\left[ \left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2}{\varvec{\rho }}_i\right] = 3\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2} - \frac{d_i^2}{\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2}} \,, \end{aligned}$$
(206)

so that, upon integrating over \(F_i\) and applying Gauss’ theorem, one has

$$\begin{aligned} \iota _{F_i} = \frac{1}{3}\int \limits _{\partial F_i}\left[ {\varvec{\rho }}_i(s_i)\cdot {\varvec{\rho }}_i(s_i)+d_i^2\right] ^{1/2}{\varvec{\rho }}_i(s_i)\cdot {\varvec{\nu }}(s_i){\rm d}s_i-\frac{d_i^2}{3}\psi _{F_i}\,, \end{aligned}$$
(207)

by recalling definition (62). In conclusion, we infer from (203) and the previous expression

$$\begin{aligned} {\varvec{\varPsi }}_{F_i} &= \int \limits _{\partial F_i}\left[ {\varvec{\rho }}_i(s_i)\cdot {\varvec{\rho }}_i(s_i)+d_i^2\right] ^{1/2} {\varvec{\rho }}_i(s_i)\otimes {\varvec{\nu }}(s_i){\rm d}s_i \\&\quad -\frac{\mathbf {I}_{2{\rm D}}}{3}\left\{ \int \limits _{\partial F_i}\left[ {\varvec{\rho }}_i(s_i)\cdot {\varvec{\rho }}_i(s_i)+d_i^2\right] ^{1/2} {\varvec{\rho }}_i(s_i)\cdot {\varvec{\nu }}(s_i){\rm d}s_i - d_i^2\psi _{F_i} \right\} \\ &= \ \sum _{j=1}^{N_{E_i}}\left\{ \left[ \int \limits _0^{l_j}\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2} {\varvec{\rho }}_i{\rm d}s_j\right] \otimes {\varvec{\nu }}_j\right. \\& \left. \quad - \frac{\mathbf {I}_{2{\rm D}}}{3} \left[ \left( {\varvec{\rho }}_j\cdot {\varvec{\nu }}_j\right) \int \limits _0^{l_j}\left( {\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2\right) ^{1/2} {\rm d}s_j\right] \right\} +\frac{ d_i^2}{3} \psi _{F_i} \\ &= \ \sum _{j=1}^{N_{E_i}}\left\{ \left[ \int \limits _0^1\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2} \left( {\varvec{\rho }}_j+ \lambda _j\Delta {\varvec{\rho }}_j\right) d\lambda _j\right] \otimes \Delta {\varvec{\rho }}_{j}^\perp \right. \\&\qquad \left. - \frac{\mathbf {I}_{2{\rm D}}}{3} \left( {\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \right) \int \limits _0^1\left[ \hat{{\varvec{\rho }}}_i(\lambda _j)\cdot \hat{{\varvec{\rho }}}_i(\lambda _j)+d_i^2\right] ^{1/2} d\lambda _j\right\} +\frac{ d_i^2}{3} \left( \psi _i - |d_i|\alpha _i\right) \\ &= \ \sum _{j=1}^{N_{E_i}}\left[ \left( I_{4j}{\varvec{\rho }}_j+ I_{5j}\Delta {\varvec{\rho }}_j\right) \otimes \Delta {\varvec{\rho }}_{j}^\perp - \frac{\mathbf {I}_{2{\rm D}}}{3} ({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp )I_{4j}\right] +\frac{ d_i^2}{3} \left( \psi _i - |d_i|\alpha _i\right) \end{aligned}$$
(208)

where \(\psi _i\) is defined in (219).

We have numerically verified that the sum over the \(N_{E_i}\) edges of the first addend on the right-hand side returns a symmetric rank-two tensor as the one on the left-hand side.

Appendix 2: Available Expressions of Integrals

We hereby collect some known formulas in order to allow the reader to implement the expression of the gravity anomaly contributed in the main body of the paper.

We first report the algebraic expression of some definite integrals that will be repeatedly referred to in the sequel; they have been computed elsewhere D’Urso (2013a, 2014a, b) though with a different denomination. Making reference to the quantities \(p_j\), \(q_j\), \(u_j\), \(v_j\) introduced in formula (71), we set

$$\begin{aligned}&{\rm ATN}1_j = { \arctan \frac{|d_i|(p_j+q_j)}{\sqrt{p_j u_j-q_j^2} \sqrt{p_j +2 q_j +v_j}}}\,, \end{aligned}$$
(209)
$$\begin{aligned}&{\rm ATN}2_j = { \arctan \frac{|d_i|q_j}{\sqrt{p_j u_j-q_j^2} \sqrt{v_j}} } \end{aligned}$$
(210)

where the suffix \((\cdot )_j\) has been added to remind that they all refer to the j-th edge of the generic face \(F_i\).

Also of interest are the following integrals

$$\begin{aligned}&I_{0j}= \int \limits _0^1\frac{d\lambda _j}{\left[ p_j \lambda ^2 + 2q_j \lambda _j + v_j\right] ^{1/2}} = \ln k_j = \ln \frac{p_j+q_j + \sqrt{p_j}\sqrt{p_j +2 q_j +v_j}}{q_j + \sqrt{p_j v_j}}={\rm LN}_j\,, \end{aligned}$$
(211)
$$\begin{aligned}& I_{1j}= \int \limits _0^1\frac{\lambda _j d\lambda _j}{\left[ p_j \lambda ^2 + 2q_j \lambda _j + v_j\right] ^{1/2}} = \frac{1}{p_j}\left\{ \sqrt{p_j+2q_j +v_j} - \sqrt{v_j}-\frac{q_j}{\sqrt{p_j}}I_{0j}\right\}, \end{aligned}$$
(212)
$$\begin{aligned} I_{2j}= \int \limits _0^1\frac{\lambda _j^2 d\lambda _j}{\left[ p_j \lambda ^2 + 2q_j \lambda _j + v_j\right] ^{1/2}} &= \frac{1}{2p_j^2}\left[ (p_j-3q_j) \sqrt{p_j+2q_j +v_j} + 3q_j \sqrt{v_j}\right] \\&\quad +\frac{3q_j^2 -p_j v_j}{2p_j^{5/2}} I_{0j}, \end{aligned}$$
(213)
$$\begin{aligned} I_{3j}= \int \limits _0^1\frac{\lambda _j^3 d\lambda _j}{\left[ p_j \lambda ^2 + 2q_j \lambda _j + v_j\right] ^{1/2}} &= \frac{1}{6p_j^3}\left[ (2p_j^2-5p_jq_j-4p_jv_j +15q_j^2) \sqrt{p_j+2q_j +v_j} \right. \\&\left. \quad +(4p_jv_j -15q_j^2) \sqrt{v_j}\right] +\frac{3p_jq_jv_j -5q_j^3}{2p_j^{7/2}} I_{0j}\,, \end{aligned}$$
(214)
$$\begin{aligned}& I_{4j}= \int \limits _0^1\left[ p_j \lambda ^2 + 2q_j \lambda _j + v_j\right] ^{1/2}d\lambda _j = \frac{(p_j+q_j)\sqrt{p_j+2q_j +v_j} - q_j\sqrt{v_j}}{2p_j}+\frac{p_jv_j -q_j^2}{2p_j^{3/2}} I_{0j}\,, \end{aligned}$$
(215)
$$\begin{aligned} I_{5j}= \int \limits _0^1\lambda _j\left[ p_j \lambda ^2 + 2q_j \lambda _j + v_j\right] ^{1/2}d\lambda _j &= \frac{1}{6p_j^2}\left[ (2p_j^2+p_jq_j+2p_jv_j -3q_j^2) \sqrt{p_j+2q_j +v_j} \right. \\&\quad \left. -(2p_jv_j -3q_j^2) \sqrt{v_j}\right] +\frac{q_j^3 -p_jq_jv_j}{2p_j^{5/2}} I_{0j}\,, \end{aligned}$$
(216)
$$\begin{aligned}& I_{6j}= \int \limits _0^1\frac{\left[ p_j \lambda ^2 + 2q_j \lambda _j + v_j\right] ^{1/2}}{p_j \lambda ^2 + 2q_j \lambda _j + u_j}d\lambda _j = \frac{|d_i|}{\sqrt{p_j u_j -q_j^2}}\left[ {\rm ATN}1_j -{\rm ATN}2_j\right] + \frac{1}{\sqrt{p_j}} {\rm LN}_j\,. \end{aligned}$$
(217)

Let us now consider the evaluation of 2D integrals having either \(({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}\) or \(({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{3/2}\) in the denominator. The first domain integral to consider is

$$\begin{aligned} \psi _{F_i}= \int \limits _{F_i}\frac{{\rm d}A_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} = \psi _i-|d_i|\alpha _i \end{aligned}$$
(218)

where

$$\begin{aligned} \psi _i&= \sum\limits _{j=1}^{N_{E_i}}\left( {\varvec{\rho }}_j\cdot {\varvec{\nu }}_j \right) \int \limits _0^{l_j}\frac{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}}{{\varvec{\rho }}_i\cdot {\varvec{\rho }}_i} {\rm d}s_j = \sum\limits _{j=1}^{N_{E_i}}\left( {\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \right) \int \limits _0^1\frac{(p_j\lambda _j^2 +2q_j\lambda _j +v_j)^{1/2}}{p_j\lambda _j^2 +2q_j\lambda _j +u_j} d\lambda _j\\ \\ &= { \sum\limits _{j=1}^{N_{E_i}} } \left( {\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \right) \left\{ { \frac{|d_i|}{\sqrt{p_j u_j-q_j^2}} \left[ {\rm ATN}1_j-{\rm ATN}2_j \right] + \frac{1}{\sqrt{p_j}} {\rm LN}_j } \right\} = \sum\limits _{j=1}^{N_{E_i}} \psi _j^i\, \left( {\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \right). \end{aligned}$$
(219)

The derivation of the previous expression can be found, e.g., in formula (19) of D’Urso (2013a) and (23) of D’Urso (2014a).

The scalar \(\alpha _i\) in (218) is the two-dimensional counterpart of the quantity \(\alpha _V\) in (26) and accounts for the singularity of \(\psi _{F_i}\) when \(d_i=0\) and \({\varvec{\rho }}={\varvec{ o }}\) where \({\varvec{ o }}=(0,\,0)\). Thus \(\alpha _i\) represents the angular measure, expressed in radians, of the intersection between \(F_i\) and a circular neighborhood of the singularity point \({\varvec{\rho }}={\varvec{ o }}\), see D’Urso (2013a, 2014a, b) for additional details. Although its computation is not required in the ensuing developments, we specify for completeness that \(\alpha _i\) can be computed by means of the general algorithm detailed in D’Urso and Russo (2002).

Analogously, formulas (19), (77) and (79) of D’Urso (2014b) yield

$$\begin{aligned} {\varvec{\psi }}_{F_i}&= \int \limits _{F_i}\frac{{\varvec{\rho }}_i{\rm d}A_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i + d_i^2)^{1/2}} =\sum _{j=1}^{N_{E_i}}{\varvec{\nu }}_j\int \limits _0^{l_j}({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d_i^2)^{1/2} {\rm d}s_i\\ \\ &= \sum _{j=1}^{N_{E_i}}l_j{\varvec{\nu }}_j \int \limits _0^1 \left[ p_j\lambda _j^2 +2q_j\lambda _j +v_j\right] ^{1/2}d\lambda _j=\sum _{j=1}^{N_{E_i}}I_{4j}\,\Delta {\varvec{\rho }}_{j}^\perp \\ \end{aligned}$$
(220)

while formulas (37) and (81) of D’Urso (2014b)

$$\begin{aligned} \varphi _{F_i} &={ \int \limits _{F_i}\frac{{\rm d}A_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{3/2}} = \frac{\alpha _i}{|d_i|} - \sum _{j=1}^{N_{E_i}}\left[ \left( {\varvec{\rho }}_j\cdot {\varvec{\nu }}_j\right) \int \limits _{0}^{l_j}\frac{{\rm d}s_{j}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i)({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{1/2}} \right] }\\ &=\frac{\alpha _i}{|d_i|} - \sum _{j=1}^{N_{E_i}}\left( {\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \right) \int \limits _0^1\frac{\lambda _j}{(p_j\lambda _j^2 +2q_j\lambda _j +u_j)(p_j\lambda _j^2 +2q_j\lambda _j +v_j)^{1/2}}\\&=\frac{\alpha _i}{|d_i|} -\sum _{j=1}^{N_{E_i}} \left[ \frac{{\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp }{|d_i|\sqrt{p_j u_j - q_j^2}}({\rm ATN}1_j-{\rm ATN}2_j)\right] =\frac{\alpha _i}{|d_i|} -\sum _{j=1}^{N_{E_i}} \varphi _j \,\left( {\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \right). \end{aligned}$$
(221)

Furthermore, on account of formulas (38) and (82) of D’Urso (2014b) it turns out to be

$$\begin{aligned} {\varvec{\varphi }}_{F_i}&= { \int \limits _{F_i}\frac{{\varvec{\rho }}_i {\rm d}A_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{3/2}} = } {\, -\sum _{j=1}^{N_{E_i}} \left( {\varvec{\nu }}_j\int \limits _{0}^{l_j} \frac{ {\rm d}s_{j}}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{1/2}} \right) }\\ &= \ - \sum _{j=1}^{N_{E_i}}\Delta {\varvec{\rho }}_{j}^\perp \int \limits _0^1\frac{d\lambda _j}{(p_j\lambda _j^2 +2q_j\lambda _j +v_j)^{1/2}} = -\sum _{j=1}^{N_{E_i}} I_{0j}\;\Delta {\varvec{\rho }}_{j}^\perp \end{aligned}$$
(222)

while one infers from formulas (40) and (83) of D’Urso (2014b)

$$\begin{aligned} {\mathbf \Phi }_{F_i} &= { \int \limits _{F_i} \frac{{\varvec{\rho }}_i\otimes {\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{3/2}} {\rm d}A_i }\\ &= -\sum _{j=1}^{N_{E_i}}\int \limits _0^{l_j} \frac{{\varvec{\rho }}_i}{({\varvec{\rho }}_i\cdot {\varvec{\rho }}_i+d^2_i)^{1/2}} {\rm d}s_i \otimes {\varvec{\nu }}_j\, + \psi _{F_i} \mathbf {I}_{2{\rm D}}\\ &= \ -\sum _{j=1}^{N_{E_i}}\int \limits _0^1\frac{{\varvec{\rho }}_j+\lambda _j\Delta {\varvec{\rho }}_j}{(p_j\lambda _j^2 +2q_j\lambda _j +v_j)^{1/2}}d\lambda _j \otimes \Delta {\varvec{\rho }}_{j}^\perp + \psi _{F_i}\mathbf {I}_{2{\rm D}} \\ &= \ -\sum _{j=1}^{N_{E_i}}\left[ {\rm LN}_j\;{\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_{j}^\perp +I_{1j}\;\Delta {\varvec{\rho }}_j\otimes \Delta {\varvec{\rho }}_{j}^\perp \right] + \psi _{F_i}\mathbf {I}_{2{\rm D}} \end{aligned}$$
(223)

where \(\mathbf {I}_{2{\rm D}}\) is the rank-two two-dimensional identity tensor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Urso, M.G., Trotta, S. Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast. Surv Geophys 38, 781–832 (2017). https://doi.org/10.1007/s10712-017-9411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9411-9

Keywords

Navigation