Skip to main content
Log in

Light’s bending angle due to black holes: from the photon sphere to infinity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The bending angle of light is a central quantity in the theory of gravitational lensing. We develop an analytical perturbation framework for calculating the bending angle of light rays lensed by a Schwarzschild black hole. Using a perturbation parameter given in terms of the gravitational radius of the black hole and the light ray’s impact parameter, we determine an invariant series for the strong-deflection bending angle that extends beyond the standard logarithmic deflection term used in the literature. In the process, we discovered an improvement to the standard logarithmic deflection term. Our perturbation framework is also used to derive as a consistency check, the recently found weak deflection bending angle series. We also reformulate the latter series in terms of a more natural invariant perturbation parameter, one that smoothly transitions between the weak and strong deflection series. We then compare our invariant strong deflection bending-angle series with the numerically integrated exact formal bending angle expression, and find less than 1% discrepancy for light rays as far out as twice the critical impact parameter. The paper concludes by showing that the strong and weak deflection bending angle series together provide an approximation that is within 1% of the exact bending angle value for light rays traversing anywhere between the photon sphere and infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petters A.O, Levine H. and Wambsganss J. (2001). Singularity Theory and Gravitational Lensing. Birkhauser, Boston

    MATH  Google Scholar 

  2. Schneider P., Ehlers J. and Falco E.E. (1992). Gravitational Lenses. Springer, Berlin

    Google Scholar 

  3. Kochanek C.S., Schneider P. and Wambsganss J. (2005). Gravitational Lensing: Strong, weak, and micro. In: Meylan, G., Jetzer, P., and North, P. (eds) Lecture Notes of the 33rd Saas-Fee Advanced Course, pp. Springer, Berlin

    Google Scholar 

  4. Keeton C.R. and Petters A.O. (2005). Phys. Rev. D 72: 104006

    Article  ADS  Google Scholar 

  5. Keeton C.R. and Petters A.O. (2006). Phys. Rev. D 73: 044024

    Article  ADS  Google Scholar 

  6. Keeton C.R. and Petters A.O. (2006). Phys. Rev. D 73: 104032

    Article  ADS  Google Scholar 

  7. Gérard, J.-M., Pireaux, S.: gr-qc/9907034 (1999)

  8. Bodener J. and Will C. (2003). Am. J. Phys. 71: 770

    Article  ADS  Google Scholar 

  9. Sereno, M., De Luca, F.: astro-ph/0609435 (2006)

  10. Virbhadra K.S. and Ellis G.F.R. (2000). Phys. Rev. D 62: 084003

    Article  ADS  Google Scholar 

  11. Frittelli S., Kling T.P. and Newman E.T. (2000). Phys. Rev. D 61: 064021

    Article  ADS  Google Scholar 

  12. Eiroa E.F., Romera G.E. and Torres D.F. (2002). Phys. Rev. D 66: 024010

    Article  ADS  Google Scholar 

  13. Petters A.O. (2003). Mon. Not. R. Astron. Soc. 338: 457

    Article  ADS  Google Scholar 

  14. Perlick V. (2004). Phys. Rev. D 69: 064017

    Article  ADS  Google Scholar 

  15. Bozza V., Capozziello S., Iovane G. and Scarpetta G. (2001). Gen. Relativ. Gravit. 33: 1535

    Article  MATH  ADS  Google Scholar 

  16. Bozza V. (2002). Phys. Rev. D. 66: 103001

    Article  ADS  Google Scholar 

  17. Bozza V. (2003). Phys. Rev. D. 67: 103006

    Article  ADS  Google Scholar 

  18. Bozza V. and Mancini L. (2004). Gen. Relativ. Gravit. 36: 435

    Article  MATH  ADS  Google Scholar 

  19. Bozza, V., De Luca, F., Scarpetta, G., Serenom, M.: gr-qc/0507137 (2005)

  20. Bozza V. and Mancini L. (2005). Astrophys. J. 627: 790

    Article  ADS  Google Scholar 

  21. Amore, P., Cervantes, M., De Pace, A., Fernandez, F.M.: gr-qc/0610153v3 (2007)

  22. Darwin, C.: Proc. R. Soc. London A249, 180 (1959); A263, 39 (1961).

  23. Atkinson R.D. (1965). Astron. J. 70: 517

    Article  ADS  Google Scholar 

  24. Luminet J.-P. (1979). Astron. Astrophys. 75: 228

    ADS  Google Scholar 

  25. Chandrasekhar, S.: The Mathematical Theory of Black Holes, Oxford (1992)

  26. Ohanian H. (1987). Am. J. Phys. 55: 428

    Article  ADS  Google Scholar 

  27. Byrd P.F. and Friedman M.D. (1971). Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Iyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyer, S.V., Petters, A.O. Light’s bending angle due to black holes: from the photon sphere to infinity. Gen Relativ Gravit 39, 1563–1582 (2007). https://doi.org/10.1007/s10714-007-0481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0481-8

Keywords

Navigation