Skip to main content
Log in

Constraint equations for general hypersurfaces and applications to shells

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Hypersurfaces of arbitrary causal character embedded in a spacetime are studied with the aim of extracting necessary and sufficient free data on the submanifold suitable for reconstructing the spacetime metric and its first derivative along the hypersurface. The constraint equations for hypersurfaces of arbitrary causal character are then computed explicitly in terms of this hypersurface data, thus providing a framework capable of unifying, and extending, the standard constraint equations in the spacelike and in the characteristic cases to the general situation. This may have interesting applications in well-posedness problems more general than those already treated in the literature. As a simple application of the constraint equations for general hypersurfaces, we derive the field equations for shells of matter when no restriction whatsoever on the causal character of the shell is imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In general, no such global basis exists, and we would need to work with bases defined on each element of a suitable open cover of \(\Sigma \). Since all the expressions below will be tensorial (unless explicitly stated), there is no loss of generality in working as if the global basis did exist. This difficulty is general to the use of index notation and it is both well-understood and harmless. An alternative is to view indices in the sense of the abstract index notation of Penrose.

References

  1. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (4 pp) (2005)

    Google Scholar 

  2. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativ. 7, 10 (2004). http://www.livingreviews.org/lrr-2004-10. Cited on 31 January 2013

  4. Barrabès, C., Israel, W.: Thin shells in general relativity and cosmology: the lightlike limit. Phys. Rev. D 43, 1129–1142 (1991)

    Google Scholar 

  5. Bonnor, W.B., Vickers, P.A.: Junction conditions in general relativity. Gen. Relativ. Gravit. 13, 29–36 (1981)

    ADS  Google Scholar 

  6. Booth, I., Fairhurst, S.: Isolated, slowly evolving, and dynamical trapping horizons: geometry and mechanics from surface deformations. Phys. Rev. D 75, 084019 (2007)

    Google Scholar 

  7. Booth, I.: Spacetime near isolated and dynamical trapping horizons. Phys. Rev. D 87, 024008 (2013)

    Google Scholar 

  8. Cao, L.-M.: Deformation of codimension-2 surfaces and horizon thermodynamics. J. High Energy Phys., 112 (2011)

  9. Choquet-Bruhat, Y., Chruściel, P.T., Martín-García, J.M.: The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions. Annales Henri Poincaré 12, 419–482 (2011)

    Article  ADS  MATH  Google Scholar 

  10. Chruściel, P.T., Jezierski, J.: On free general relativistic initial data on the light cone. J. Geom. Phys. 62, 578–593 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Chruściel, P.T., Paetz, T.-T.: The many ways of the characteristic Cauchy problem. Class. Quantum Grav. 29, 145006 (2012)

    Article  ADS  Google Scholar 

  12. Clarke, C.J.S., Dray, T.: Junction conditions for null hypersurfaces. Class. Quantum Grav. 4, 265–275 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Darmois, G.: “Les équations de la gravitation einstenienne”, Mémorial des Sciences Mathématiques, Fascicule XXV. Gauthier-Villars, Paris (1927)

    Google Scholar 

  14. Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017–1031 (1987)

    Google Scholar 

  15. Gourgoulhon, E.: Generalized Damour–Navier–Stokes equation applied to trapping horizons. Phys. Rev. D 72, 104007 (2005)

    Google Scholar 

  16. Gourgoulhon, E., Jaramillo, J.L.: Area evolution, bulk viscosity, and entropy principles for dynamical horizons. Phys. Rev. D 74, 087502 (2006)

    Google Scholar 

  17. Hayward, S.A.: General laws of black-hole dynamics. Phys. Rev. D 49, 6467–6474 (1994)

    Google Scholar 

  18. Israel, W.: Singular hypersurfaces and thin shells in general relativity. Nuovo Cimento. B 44, 1–14 (1967); (erratum B48 463)

  19. Jaramillo, J.L., Gourgoulhon, E., Cordero-Carrión, I., Ibáñez, J.M.: Trapping horizons as inner boundary conditions for black hole spacetimes. Phys. Rev. D 77, 047501 (2008)

    Google Scholar 

  20. Jezierski, J., Kijowski, J., Czuchry, E.: Geometry of null-like surfaces in general relativity and its application to dynamics of gravitating matter. Rep. Math. Phys. 46, 399–418 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Jezierski, J., Kijowski, J., Czuchry, E.: Dynamics of self gravitating light-like matter shell: a gauge-invariant Lagrangian and Hamiltonian description. Phys. Rev. D 65, 064036 (2002)

    Google Scholar 

  22. Jezierski, J.: Geometry of null hypersurfaces. In: Rácz, I. (ed.) Proceedings of the 7th Hungarian Relativity Workshop, 2003, Relativity Today. Akadémiai Kiadó, Budapest (2004)

  23. Krishnan, B.: The spacetime in the neighborhood of a general isolated black hole. Class. Quantum Grav. 29, 205006 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  24. Korzynski, M.: Isolated and dynamical horizons from a common perspective. Phys. Rev. D 74, 104029 (2006)

    Google Scholar 

  25. Lanczos, K.: Bemerkungen zur de Sitterschen Welt. Physikalische Zeitschrift 23, 539–547 (1922)

    MATH  Google Scholar 

  26. Lanczos, K.: Flächenhafte verteiliung der Materie in der Einsteinschen Gravitationstheorie. Annalen der Physik (Leipzig) 74, 518–540 (1924)

    Article  ADS  MATH  Google Scholar 

  27. Lee, J.M.: Manifolds and Differential Geometry, Graduate Studies in Mathematics, vol. 107. American Mathematical Society (2009)

  28. LeFloch, P.G., Mardare, C.: Definition and weak stability of spacetimes with distributional curvature. Port. Math. 64, 535–573 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lichnerowicz, A.: Théories Relativistes de la Gravitation et de l’Electromagnétisme. Masson, Paris (1955)

    MATH  Google Scholar 

  30. Mars, M., Senovilla, J.M.M.: Geometry of general hypersurfaces in spacetime: junction conditions. Class. Quantum Grav. 10, 1865–1897 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Mars, M., Senovilla, J.M.M., Vera, R.: Lorentzian and signature changing branes. Phys. Rev. D 76, 04402922 (2007)

    Google Scholar 

  32. Nicolò, F.: The characteristic problem for the Einstein vacuum equations. Il Nuovo Cimento B 119, 749–771 (2004)

    ADS  Google Scholar 

  33. O’Brien, S., Synge, J.L.: Jump conditions at discontinuities in general relativity. Commun. Dublin Inst. Adv. Stud. A 9, (1952)

  34. Rendall, A.D.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications for the Einstein equations. Proc. R. Soc. Lond. A 427, 221–239 (1990)

    Google Scholar 

  35. Schouten, J.A.: Ricci Calculus. Springer, Berlin (1954)

    Book  MATH  Google Scholar 

  36. Taub, A.H.: Space-times with distribution valued curvature tensors. J. Math. Phys. 21, 1423–1431 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  37. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  38. Winicour, J.: Characteristic evolution and matching. Living Rev. Relativ. 1, 5 (1998). http://www.livingreviews.org/lrr-1998-5. Cited on 31 January 2013

Download references

Acknowledgments

I wish to thank José M. M. Senovilla and Alberto Soria for useful comments on a previous version of the manuscript and José Luis Jaramillo and an anonymous referee for suggesting interesting references related to this work. Financial support under the projects FIS2012-30926 (Spanish MICINN) and P09-FQM-4496 (Junta de Andalucía and FEDER funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mars.

Additional information

This article belongs to the Topical Collection: Progress in Mathematical Relativity with Applications to Astrophysics and Cosmology.

About this article

Cite this article

Mars, M. Constraint equations for general hypersurfaces and applications to shells. Gen Relativ Gravit 45, 2175–2221 (2013). https://doi.org/10.1007/s10714-013-1579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1579-9

Keywords

Navigation