Skip to main content
Log in

Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Picea asperata is a dominant tree species in the southeast of the Tibetan Plateau of China. This paper studies the short-term effects of warming, enhanced UV-B (290–315 nm) and their combination on growth, photosynthesis and antioxidant defense system (AOS) of P. asperata seedlings. The experimental design included two levels of UV-B (ambient UV-B and enhanced by 30% UV-B) and two levels of temperature (ambient temperature and warmed temperature by 1.74°C). Although enhanced UV-B increased the efficiency of antioxidant defense system (AOS) including UV-B absorbing compounds, carotenoids, and antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD), it induced over production of reactive oxygen species (ROS) and oxidative stress eventually. Moreover, enhanced UV-B reduced growth, chlorophyll content and net photosynthetic rate (A). Warming did not significantly affect dry mass accumulation of P. asperata seedlings while it accelerated stem elongation and stimulated A. Furthermore, warming alleviated the harmful effects of enhanced UV-B on the growth and photosynthesis. It also increased the antioxidant capacities of seedlings exposed to enhanced UV-B. Our results showed that the growth of P. asperata seedlings was inhibited by a combination of enhanced UV-B and warming, however, to some extent warming alleviated UV-B effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Net photosynthetic rate

AOS:

Antioxidant defense system

APX:

Ascorbate peroxidase

CAT:

Catalase

C i :

Intercellular CO2 concentration

g s :

Stomatal conductance to vapour

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

O2 :

Superoxide anion radicals

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

UV-B:

Ultraviolet-B

References

  • Agrawal SB, Rathore D (2007) Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59:21–33. doi:10.1016/j.envexpbot.2005.09.009

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi:10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  • Ballaré CL, Scopel AL, Stapleton AE, Yanovsky MJ (1996) Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to Herbivore insects in Datura ferox. Plant Physiol 112:161–170

    PubMed  Google Scholar 

  • Becana M, Aparicio-Tejo P, Irigoyen JJ, Snchez-Daz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171. doi:10.1104/pp.82.4.1169

    Article  PubMed  CAS  Google Scholar 

  • Bian JC, Wang GC, Chen HB, Qi D, Lü D, Zhou XJ (2006) Ozone mini-hole occurring over the Tibetan Plateau in December 2003. Chin Sci Bull 51(7):885–888. doi:10.1007/s11434-006-0885-y

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Phytophysiology. Academic Press, New York, pp 131–177

    Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M, Bornman JF, Bjoern LO, Kulandaivelu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173

    Google Scholar 

  • Casati P, Lara MW, Andreo CS (2001) Regulation of enzymes involved in C4 photosynthesis and the antioxidant metabolism by UV-B radiation in Egeria densa, a submersed aquatic species. Photosynth Res 71:251–264. doi:10.1023/A:1015543208552

    Article  Google Scholar 

  • Correia CM, Moutinho Pereira JM, Coutinho JF, Björn LO, Torres-Pereira JMG (2005) Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: a Mediterranean field study. Eur J Agron 22:337–347. doi:10.1016/j.eja.2004.05.002

    Article  CAS  Google Scholar 

  • Costa H, Gallego SM, Tomaro ML (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci 162:939–945. doi:10.1016/S0168-9452(02)00051-1

    Article  CAS  Google Scholar 

  • De La Rose TM, Aphalo PJ, Lehto T (2003) Effects of ultraviolet-B radiation on growth, mycorrhizas and mineral nutrition of silver birch (Betula pendula Roth) seedlings grown in low-nutrient conditions. Glob Change Biol 9:65–73. doi:10.1046/j.1365-2486.2003.00525.x

    Article  Google Scholar 

  • Dubé SL, Bornman JF (1992) Response of spruce seedlings to simultaneous exposure to ultraviolet-B radiation and cadmium. Plant Physiol Biochem 30:761–767

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33(1):317–345. doi:10.1146/annurev.pp.33.060182.001533

    Article  CAS  Google Scholar 

  • Girotti AW (1985) Mechanisms of lipid peroxidation. Free Radic Biol Med 1:87–95. doi:10.1016/0748-5514(85)90011-X

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  PubMed  CAS  Google Scholar 

  • Hideg E, Nagy T, Oberschall D, Dudits D, Vass I (2003) Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280–320 nm) stresses. Plant Cell Environ 26:513–522. doi:10.1046/j.1365-3040.2003.00982.x

    Article  CAS  Google Scholar 

  • Hollister RD, Webber PJ (2000) Biotic validation of small open-top chambers in a tundra ecosystem. Glob Change Biol 6:835–842. doi:10.1046/j.1365-2486.2000.00363.x

    Article  Google Scholar 

  • Hollister RD, Webber PJ, Tweedie CE (2005) The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Glob Change Biol 11:525–536. doi:10.1111/j.1365-2486.2005.00926.x

    Article  Google Scholar 

  • Hunt JE, McNeil DL (1998) Nitrogen status affects UV-B sensitivity of cucumber. Aust J Plant Physiol 25:79–86

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis—summary for policymakers. IPCC WGI third assessment report. Shanghai Draft, 21 January 2001

  • Ke DS, Wang AG, Sun GC, Dong LF (2002) The effect of active oxygen on the activity of ACC synthase induced by exogenous IAA. Acta Bot Sin 44:551–556 (in Chinese)

    CAS  Google Scholar 

  • Kulandaivelu G, Maragatham S, Nedunchezhian N (1989) On the possible control of ultraviolet-B induced response in growth and photosynthetic activities in higher plants. Physiol Plant 76:398–404

    CAS  Google Scholar 

  • Lewis JD, Lucash M, Olszyk D, Tingey DT (2001) Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated carbon dioxide and temperature. Plant Cell Environ 24:539–548. doi:10.1046/j.1365-3040.2001.00700.x

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Liu L, Gitz DCIII, Mcclure W (1995) Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol Plant 93:725–733. doi:10.1111/j.1399-3054.1995.tb05123.x

    Article  CAS  Google Scholar 

  • Mackerness SAH, Jordan BR, Thomas B (1999) Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280–320 nm) in green and etiolated buds of pea (Pisum sativum L.). J Photochem Photobiol B 48:180–188

    Article  CAS  Google Scholar 

  • Mark U, Tevini M (1997) Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings. Plant Ecol 128:225–234. doi:10.1023/A:1009798528605

    Article  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771. doi:10.1016/S0168-9452(01)00462-9

    Article  CAS  Google Scholar 

  • Ros J (1990) Zur Wirkung von UV-Strahlung auf das Streckungs-Wachstum von Sonnenblumenkeimlingen (Helianthus annuus L.). In: Tevini M (ed) Karlsruher Beitr, Entwicklungs-und Ökophysiol, pp 1–157

  • Santos I, Fidalgo F, Almeida JM, Salema R (2004) Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Sci 167:925–935. doi:10.1016/j.plantsci.2004.05.035

    Article  CAS  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–400. doi:10.1046/j.1469-8137.2001.00057.x

    Article  CAS  Google Scholar 

  • Searles PS, Caldwell MM, Winter K (1995) The response of five tropical dicotyledon species to solar ultraviolet-B radiation. Am J Bot 82:445–453. doi:10.2307/2445690

    Article  Google Scholar 

  • Smith JL, David JB, Bannister P (2000) Shoot dry weight chlorophyll and UV-B-absorbing compounds as indicators of plant’s sensitivity to UV-B radiation. Ann Bot (Lond) 86:1057–1063. doi:10.1006/anbo.2000.1270

    Article  CAS  Google Scholar 

  • Strid A, Porra RJ (1992) Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant Cell Physiol 33:1015–1023

    CAS  Google Scholar 

  • Strid A, Chow WS, Anderson JM (1994) UV-B damage and protection at the molecular level in plants. Photosynth Res 39:475–489. doi:10.1007/BF00014600

    Article  CAS  Google Scholar 

  • Sullivan JH, Teramura AH (1992) The effects of ultraviolet-B radiation on loblolly pine. 2. Growth of field-grown seedlings. Trees (Berl) 6:115–120. doi:10.1007/BF00202426

    Article  Google Scholar 

  • Teramura AH, Ziska LH (1996) Ultraviolet-B radiation and photosynthesis. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, The Netherlands, pp 435–450

    Google Scholar 

  • Yu J, Tang XX, Zhang PY, Tian JY, Cai HJ (2004) Effects of CO2 enrichment on photosynthesis, lipid peroxidation and activities of antioxidative enzymes of Platymonas subcordiformis subjected to UV-B radiation stress. Acta Bot Sin 46:682–690

    CAS  Google Scholar 

Download references

Acknowledgments

During this work, the senior author was supported by the National Natural Science Foundation of China (No.30530630), the Talent Plan of the Chinese Academy of Sciences and “Knowledge Innovation Engineering” of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Liu, Q. & Yang, Y. Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regul 58, 153–162 (2009). https://doi.org/10.1007/s10725-009-9363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9363-2

Keywords

Navigation