Skip to main content
Log in

Role of some growth regulators on cytogenetic activity of barley under salt stress

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of gibberellic acid (GA3), kinetin (KIN), benzyladenine and ethylene (E) on mitotic activity and chromosomal aberrations in root tips of barley seeds (Hordeum vulgare L. cv. “Bülbül 89”) germinated under salt stress were investigated. It was determined that all of these plant growth regulators (PGRs) decreased mitotic index in root tips of barley seeds germinated at 20 °C and in distilled water. Furthermore, some of the PGRs studied increased significantly the frequency of chromosomal aberrations. The frequency of chromosomal aberrations in seeds treated with E and KIN was considerably higher than in the seeds germinated under nonstress conditions. The inhibitory effect of salt stress on mitotic index increased with increasing salt concentration (0.30, 0.35, 0.40 and 0.45 molal, m). GA3 and KIN pretreatments showed a successful performance in ameliorating the negative effects of increasing salinity on mitotic activity. The number of chromosomal aberrations also increased with increasing NaCl concentration. However, most of the PGR pretreatments studied alleviated the detrimental effects of increasing salinity on chromosomal aberrations. KIN pretreatment at 0.30 and 0.35 m salinity could not rescued the cytogenetic activity of salt stress on this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33(2):151–153

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plant. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf MY, Sarwar G, Ashraf M, Afaf R, Sattar A (2002) Salinity induced changes in a—amylase activity during germination and early cotton seedling growth. Biol Plantarum 45(4):589–591

    Article  CAS  Google Scholar 

  • Barciszewski J, Siboska G, Rattan SIS, Clark BFC (2000) Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine). Plant Growth Regul 32:257–265

    Article  CAS  Google Scholar 

  • Baroncelli S, Cavallini A, Lercari B, Cionini PG, D’Amato F (1988) Effect of light and gibberellic acid on cell division in the first foliage leaf of durum wheat (Triticum durum Desf.). Planta 173(2):257–262

    Article  CAS  Google Scholar 

  • Besnard-Wibant C, Noin M, Zeevaart JAD (1983) Mitotic activities and levels of nuclear DNA in the apical meristem of Silene armeria (strain SI.2) following application of gibberellin A3. Plant Cell Physiol 24:1269–1279

    Google Scholar 

  • Bozcuk S (1978) Domates (Lycopersicum esculentum Mill.), arpa (Hordeum vulgare L.) ve pamuk (Gossypium hirsitum L.) bitkilerinin büyüme ve gelişmesinde tuz-kinetin etkileşimi üzerinde araştırmalar, Doçentlik tezi, Hacettepe Üniversity, Fen Fak

  • Braun JW, Khan AA (1976) Alleviation of salinity and high temperature stress by plant growth regulators permeated into lettuce seeds via acetone. J Am Soc Hortic Sci 101:716–721

    CAS  Google Scholar 

  • Briand CH, Kapoor BM (1989) The cytogenetic effects of sodium salicylate on the root meristem cells of Allium sativum L. Cytologia 54:203–209

    CAS  Google Scholar 

  • Çavuşoğlu K, Kabar K (2008) Bazı bitki büyüme düzenleyicilerinin tuzlu koşullar altındaki arpa tohumlarının çimlenmesi üzerindeki etkilerinin karşılaştırılması. Science and Eng J Fırat Univ 20(1):43–55

    Google Scholar 

  • Cony MA, Trione SO (1998) Inter and intraspecific variability in Prosopis flexuosa and P chilensis: seed germination under salt and moisture stress. J Arid Environ 40:307–317

    Article  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of salt tolerance in plant. Springer, Netherlands, pp 41–99

    Chapter  Google Scholar 

  • Dash M, Panda SK (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus muingo seeds. Biol Plantarum 44:587–589

    Article  CAS  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    Article  CAS  PubMed  Google Scholar 

  • Elçi Ş (1982) Sitogenetikte Gözlemler ve Araştırma Yöntemleri. Fırat Univ Press, Elazığ

    Google Scholar 

  • El-Mashad AA, Kamel EA (2001) Amelioration of NaCl stress in Pisum sativum. Indian J Exp Biol 39(5):469–475

    CAS  PubMed  Google Scholar 

  • Fiskesjö G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. Lewis Publishers, New York, pp 308–333

    Google Scholar 

  • Fiskesjö G, Levan A (1993) Evaluation of the first ten MEIC chemicals in the Allium test. ATLA 21:139–149

    Google Scholar 

  • Gatta L, Marhitelli C, Federico R (1992) Effect of polyamines and their oxydative product on maize and lentil root growth. Ann Bot (Lond.) 50:43–48

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Gupta AK, Singh J, Kaur N, Singh R (1993) Effect of polyethylene glycol induced water stress on uptake, interconversion and transport of sugar in chickpea seedlings. Plant Physiol Biochem 31:743–747

    CAS  Google Scholar 

  • Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24:693–701

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2005) Changes in growth photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul 46:19–30

    Article  CAS  Google Scholar 

  • Jamil M, Lee KB, Jung KY, Lee DB, Han MS, Rha ES (2007) Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.). Pakistan J Biol Sci 10(6):910–914

    Article  CAS  Google Scholar 

  • Kabar K (1987) Alleviation of salinity stress by plant growth regulators on seed germination. J Plant Physiol 128:179–183

    CAS  Google Scholar 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol 37:169–173

    CAS  Google Scholar 

  • Kazama H, Dan H, Imaseki H, Wasteneys GO (2004) Transient exposure to ethylene stimulates cell division and alters the fate and polarity of hypocotyls epidermal cells. Plant Physiol 134:1–10

    Article  Google Scholar 

  • Klasterska I, Natarajan AT, Ramel C (1976) An interpretation of the origin of subchromatid aberrations and chromosome stickiness as a category of chromatid aberrations. Hereditas 83:153–162

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko EK, Marushko EA, Kononenko NV, Leonova TG (2005) Effects of fusicoccin on the early stages of sorghum growth at high NaCl concentrations. Russ J Plant Physl 52:332–337

    Article  CAS  Google Scholar 

  • MacDonald JE, Little CH (2006) Foliar application of GA3 during terminal long-shoot bud development stimulates shoot apical meristem activity in Pinus sylvestris seedlings. Tree Physiol 26(10):1271–1276

    CAS  PubMed  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mutlu F, Bozcuk S (2000) Tuzlu koşullarda ayçiçeği tohumların çimlenmesi ve erken büyüme üzerine dışsal spermin’in etkileri. Turkish J Biol 24:635–643

    CAS  Google Scholar 

  • Patil BC, Bhat GI (1992) A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternetea L. Cytologia 57:259–264

    CAS  Google Scholar 

  • Ponce G, Barlow PW, Feldman LJ, Cassab GI (2005) Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize. Plant Cell Environ 28(6):719–732

    Article  CAS  PubMed  Google Scholar 

  • Prakash L, Prathapasenan G (1988) Effect of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice. J Agron Crop Sci 160:325–334

    Article  CAS  Google Scholar 

  • Prakash L, Prathapasenan G (1990) Interactive effect of. NaCl salinity and gibberellic acid and gibberellin like substances and yield of rice (Oryza sativa L. var. G.R.3). Proc Indian Acad Sci 100:173–181

    CAS  Google Scholar 

  • Radić S, Prolić M, Pavlica M, Pevalek-Kozlina B (2005) Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L. Environ Exp Bot 54:213–218

    Article  Google Scholar 

  • Ronzhiana ES (2003) Cytokinin regulated mesophyll cell division and expansion during development of Cucurbita pepo leaves. Russian J Plant Physiol 50:646–655

    Article  Google Scholar 

  • Samella J, Haegman M, Kurepa J, van Montagu M, van der Straeten D (1997) Ethylene can stimulate Arabidopsis hypocotyls elongation in the light. Proc Natl Acad Sci USA 94:2756–2761

    Article  Google Scholar 

  • Schmidhalter U, Oertli JJ (1991) Germination and seedling growth of carrots under salinity and moisture stres. Plant Soil 132:243–251

    Google Scholar 

  • Stange L, Osborne DJ (1988) Cell specificity in auxin—and ethylene- induced ‘supergrowth’ in Riella helicophylla. Planta 175:341–347

    Article  CAS  Google Scholar 

  • Swiatek A, Azmi A, Witters E, Van Onckelen H (2003) Stress messengers jasmonic acid and abcisic acid negatively regulate plant cell cycle. Bulg J Plant Physiol. Special Issue 172–178

  • Tabur S, Demir K (2009) Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul 58:119–123

    Article  CAS  Google Scholar 

  • Tajbakhsh M, Zhou MX, Chen ZH, Mendham NJ (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust J Exp Agric 46(4):555–562

    Article  Google Scholar 

  • Tobe K, Zhang L, Omasa K (2003) Alleviatory effects of calcium on the toxicity of sodium, potassium and magnesium chlorides to seed germination in three nonhalophytes. Seed Sci Res 13:47–54

    Article  CAS  Google Scholar 

  • Tomaszewska-Sowa M, Drozdowska L, Szota M (2002) Effect of cytokinins on in vitro morphogenesis and ploidy of pepper Capsicum annuum L. Electron J Polish Agric Univ Agronomy 5:1

    Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Scientific Research Project Management of Süleyman Demirel University (SDUBAP) for the financial support of the project SDUBAP (1167-YL-05). Thanks also to Assist. Prof. Dr. Kürşat Çavuşoğlu (Süleyman Demirel Univ., Biology Department, Isparta, Türkiye) for his help in a preliminary study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Tabur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabur, S., Demir, K. Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regul 60, 99–104 (2010). https://doi.org/10.1007/s10725-009-9424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9424-6

Keywords

Navigation