Skip to main content
Log in

Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A study quantifying the interactive effects of cadmium (Cd) and carbon nanotubes (CNTs) on plant growth and Cd accumulation of pot-cultured Spartina alterniflora was conducted. The experiment consisted of two Cd levels (50, 200 mg kg−1) as well as two CNTs levels (800, 2,400 mg kg−1). As expected, CNTs alleviated higher Cd stress (200 mg kg−1) due to restored shoot growth reduction, retrieved water content and resumed plant height. Furthermore, CNTs mitigated the deleterious effects of Cd stress through improving K+ and Ca2+ contents, while reducing Na+/K+ and Na+/Ca2+ ratios, regardless of the level of Cd stress. The proline contents in combined Cd and CNTs treatments were lower than Cd alone, suggesting that CNTs could reduce production of organic solutes under Cd stress. The results also showed higher Cd accumulation in roots than shoots, and both were improved by CNTs, except inhibition in roots under higher Cd stress (200 mg kg−1). It appears that CNTs may not significantly affect negative Cd effects on growth of S. alterniflora, but improve total Cd accumulation under lower Cd stress (50 mg kg−1). However, under higher Cd stress (200 mg kg−1), CNTs restored the reduced plant growth, improved and reduced Cd accumulation in shoots and roots, respectively. Therefore, the effects of CNTs on plant growth and Cd accumulation are different, and levels of Cd stress should be considered when evaluating the combined application of CNTs and S. alterniflora on phytoremediation of Cd pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CNTs:

Carbon nanotubes

Cd:

Cadmium

References

  • Agboola AE, Pike RW, Hertwig TA, Lou HH (2007) Conceptual design of carbon nanotube processes. Clean Technol Environ 9:289–311

    Article  CAS  Google Scholar 

  • Aibibu N, Liu YG, Zeng GM, Wang X, Chen BB, Song HX, Xu L (2010) Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol 101:6297–6303

    Article  PubMed  CAS  Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, Basel, pp 285–313

    Chapter  Google Scholar 

  • Bates LS, Waldron RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Brady CJ, Gibson TS, Barlow EWR, Speirs J, Wyn Jones RG (1984) Salt-tolerance in plants. I. Ions, compatible organic solutes and the stability of plant ribosomes. Plant Cell Environ 7:571–578

    CAS  Google Scholar 

  • Cui S, Zhou QX, Wei SH, Zhang W, Cao L, Ren LP (2007) Effects of exogenous chelators on phytoavailablilty and toxicity of Pb in Zinnia elegans jacq. J Hazard Mater 146:341–346

    Article  PubMed  CAS  Google Scholar 

  • Dary M, Chamber-Pirez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  PubMed  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 38:350–356

    Article  Google Scholar 

  • Fritsch C, Giraudoux P, Coeurdassier M, Douay F, Raoul F, Pruvot C, Waterlot C, de Vaufleury A, Scheifler R (2010) Spatial distribution of metals in smelter-impacted soils of woody habitats: influence of landscape and soil properties, and risk for wildlife. Chemosphere 81:141–155

    Article  PubMed  CAS  Google Scholar 

  • Gao ZM, Bandosz TJ, Zhao ZB, Han M, Liang CH, Qiu JS (2008) Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open-surface carbonaceous materials. Langmuir 24:11701–11710

    Article  PubMed  CAS  Google Scholar 

  • Hempel M, Botté SE, Negrin VL, Chiarello MN, Marcovecchio JE (2008) The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca estuary salt marshes. J Soil Sediment 8:289–297

    Article  CAS  Google Scholar 

  • Hinkle RL, Mitsch WJ (2005) Salt marsh vegetation recovery at salt hay farm wetland restoration sites on Delaware Bay. Ecol Eng 25:240–251

    Article  Google Scholar 

  • Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa K (2005) Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett 159:192–201

    Article  PubMed  CAS  Google Scholar 

  • James R, Munns R, Caemmerer SV, Trejo C, Miller C, Condou TAG (2006) Phytosynthetic capability is related to the cellular and subcellular partitioning of Na+, K+ and Cl in salt-affected barley and durum wheat. Plant Cell Environ 29:2185–2197

    Article  PubMed  CAS  Google Scholar 

  • Ji PH, Sun TH, Song YF, Ackland ML, Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159:762–768

    Article  PubMed  CAS  Google Scholar 

  • Jiang YW, Huang BR (2001) Effects of cadmium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanable F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  PubMed  CAS  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116:368–372

    Article  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    Article  CAS  Google Scholar 

  • Lefèvre I, Marchal G, Corréal E, Zanuzzi A, Lutts S (2009) Variation in response to heavy metals during vegetation growth in Dorycnium pentaphyllum scop. Plant Growth Regul 59:1–11

    Article  Google Scholar 

  • Leita L, Contin M, Maggioni A (1991) Distribution of cadmium and induced Cd binding proteins in roots, stems and leaves of Phaseolus vulgaris. Plant Sci 77:139–147

    Article  CAS  Google Scholar 

  • Li RL, Shi FC, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environ Exp Bot 68:66–74

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006) Heavy metal displacement in EDTA-assisted phytoremediation of biosolids soil. Water Sci Technol 54:147–153

    PubMed  CAS  Google Scholar 

  • Liu Y, Li Y, Yan XP (2008) Preparation, characterization, and application of l-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater 18:1536–1543

    Article  CAS  Google Scholar 

  • Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, Fang XH (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940

    Article  CAS  Google Scholar 

  • Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246

    Article  PubMed  CAS  Google Scholar 

  • Manuel J, Reigosa R (2001) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Dordrecht, pp 365–383

    Google Scholar 

  • Mclaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Review: the behaviour and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1–54

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Morishirta T, Boratynski K (1992) Accumulation of Cd and other metals in organs of plants growing around metal smelters in Japan. Soil Sci Plant Nutr 38:781–785

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  PubMed  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  PubMed  CAS  Google Scholar 

  • Ong YT, Ahmad AL, Zein SHS, Tan SH (2010) A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz J Chem Eng 27:227–242

    CAS  Google Scholar 

  • Pyrzynska K (2010) Carbon nanostructures for separation, preconcentration and speciation of metal ions. Trends Analyt Chem 29:718–727

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  • Salla V, Hardaway CJ, Sneddon J (2011) Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soils from Southwest Louisiana. Microchem J 97:207–212

    Article  CAS  Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82:772–776

    Article  PubMed  CAS  Google Scholar 

  • Sun RL, Zhou QX, Jin CX (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134

    Article  CAS  Google Scholar 

  • Sun RL, Jin CX, Zhou QX (2010) Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regul 61:67–74

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  PubMed  CAS  Google Scholar 

  • Varun M, D’Souza R, Pratas J, Paul MS (2011) Evaluation of phytostabilization, a green technology to remove heavy metals from industrial sludge using Typha latifolia L. Biotechnol Bioinf Bioeng 1:137–145

    Google Scholar 

  • Vasquez EA, Glenn EP, Guntenspergen GR, Brown JJ, Nelson SG (2006) Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M halophyte of Phragmites australis (Poaceae) along a salinity gradient. Am J Bot 93:1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Wang CQ, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell R 28:1341–1349

    Article  CAS  Google Scholar 

  • Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B (2006) Invasive Spartina alterniflora-biology, ecology and management. Acta Phytotaxon Sin 44:559–588 (in Chinese)

    Article  Google Scholar 

  • Wei S, Teixeira da Siliva JA, Zhou Q (2008) Agro-improving method of phytoextracting heavy metals contaminated soil. J Hazard Mater 150:662–668

    Article  PubMed  CAS  Google Scholar 

  • Xu YH, Zhao DY (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Tan XL, Chen CL, Wang XK (2008) Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416

    Article  PubMed  CAS  Google Scholar 

  • Zhang XX, Fan XM, Li C, Nan ZB (2010) Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regul 60:91–97

    Article  CAS  Google Scholar 

  • Zhang L, Qin YW, Zheng BH, Jia J, Lei K (2011) Distribution and pollution assessment of heavy metals in sediments from typical areas in the Bohai Sea. Acta Scientiae Circumstantiae 31:1676–1684 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Program of National Science Foundation of China (30470179) and Science Research Planning Project of Tianjin Port.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minwei Chai or Ruili Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, M., Shi, F., Li, R. et al. Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regul 71, 171–179 (2013). https://doi.org/10.1007/s10725-013-9817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9817-4

Keywords

Navigation