Skip to main content

Advertisement

Log in

Fibroblast growth factor-2 and cardioprotection

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Boosting myocardial resistance to acute as well as chronic ischemic damage would ameliorate the detrimental effects of numerous cardiac pathologies and reduce the probability of transition to heart failure. Experimental cardiology has pointed to ischemic and pharmacological pre- as well as post-conditioning as potent acute cardioprotective manipulations. Additional exciting experimental strategies include the induction of true regenerative and/or angiogenic responses to the damaged heart, resulting in sustained structural and functional beneficial effects. Fibroblast growth factor-2 (FGF-2), an endogenous multifunctional protein with strong affinity for the extracellular matrix and basal lamina and well-documented paracrine, autocrine and intacellular modes of action, has been shown over the years to exert acute and direct pro-survival effects, irrespectively of whether it is administered before, during or after an ischemic insult to the heart. FGF-2 is also a potent angiogenic protein and a crucial agent for the proliferation, expansion, and survival of several cell types including those with stem cell properties. Human clinical trials have pointed to a good safety record for this protein. In this review, we will present a case for the low molecular weight isoform of fibroblast growth factor-2 (lo-FGF-2) as a very promising therapeutic agent to achieve powerful acute as well as sustained benefits for the heart, due to its cytoprotective and regenerative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs. Bioassays 22:108–112

    CAS  Google Scholar 

  2. Itoh N, Ornitz DM (2004) Evolution of the FGF and FGFR gene families. Trends Genet 20:563–569

    PubMed  CAS  Google Scholar 

  3. Detillieux KA, Jimenez SK, Sontag DP, Nickerson PW, Kardami E, Cattini PA (2004) The application of genetic mouse models to elucidate a role for FGF-2 in the mammalian cardiovascular system. Kluwer Academic Publishers, Boston, pp 373–391

  4. Kardami E, Jiang ZS, Jimenez SK, Hirst CJ, Sheikh F, Zahradka P, Cattini PA (2004) Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovasc Res 63:458–466

    PubMed  CAS  Google Scholar 

  5. Padua RR, Merle PL, Doble BW, Yu CH, Zahradka P, Pierce GN, Panagia V, Kardami E (1998) FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: involvement of sarcolemmal calcium-independent protein kinase C. J Mol Cell Cardiol 30:2695–2709

    PubMed  CAS  Google Scholar 

  6. Padua RR, Sethi R, Dhalla NS, Kardami E (1995) Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143:129–135

    PubMed  CAS  Google Scholar 

  7. Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, Cattini PA, Dixon IM, Kardami E (2002) Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am J Physiol Heart Circ Physiol 282:H1071–1080

    PubMed  CAS  Google Scholar 

  8. Jiang ZS, Srisakuldee W, Soulet F, Bouche G, Kardami E (2004) Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res 62:154–166

    PubMed  CAS  Google Scholar 

  9. Tappia PS, Padua RR, Panagia V, Kardami E (1999) Fibroblast growth factor-2 stimulates phospholipase Cbeta in adult cardiomyocytes. Biochem Cell Biol 77:569–575

    PubMed  CAS  Google Scholar 

  10. Detillieux KA, Sheikh F, Kardami E, Cattini PA (2003) Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57:8–19

    PubMed  CAS  Google Scholar 

  11. Detillieux KA, Cattini PA, Kardami E (2004) Beyond angiogenesis: the cardioprotective potential of fibroblast growth factor-2. Can J Physiol Pharmacol 82:1044–1052

    PubMed  CAS  Google Scholar 

  12. Liu L, Pasumarthi KB, Padua RR, Massaeli H, Fandrich RR, Pierce GN, Cattini PA, Kardami E (1995) Adult cardiomyocytes express functional high-affinity receptors for basic fibroblast growth factor. Am J Physiol 268:H1927–1938

    PubMed  CAS  Google Scholar 

  13. Ishibashi Y, Urabe Y, Tsutsui H, Kinugawa S, Sugimachi M, Takahashi M, Yamamoto S, Tagawa H, Sunagawa K, Takeshita A. (1997) Negative inotropic effect of basic fibroblast growth factor on adult rat cardiac myocyte. Circulation 96:2501–2504

    PubMed  CAS  Google Scholar 

  14. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    PubMed  CAS  Google Scholar 

  15. van den Bos C, Mosca JD, Winkles J, Kerrigan L, Burgess WH, Marshak DR (1997) Human mesenchymal stem cells respond to fibroblast growth factors. Hum Cell 10:45–50

    PubMed  Google Scholar 

  16. Sugimoto Y, Koji T, Miyoshi S (1999) Modification of expression of stem cell factor by various cytokines. J Cell Physiol 181:285–294

    PubMed  CAS  Google Scholar 

  17. Burger PE, Coetzee S, McKeehan WL, Kan M, Cook P, Fan Y, Suda T, Hebbel RP, Novitzky N, Muller WA et al (2002) Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood 100:3527–3535

    PubMed  CAS  Google Scholar 

  18. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574

    Google Scholar 

  19. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    PubMed  CAS  Google Scholar 

  20. Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K (2004) Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J 68:691–702

    PubMed  CAS  Google Scholar 

  21. Jiang ZS, Jeyaraman M, Wen GB, Fandrich RR, Dixon IM, Cattini PA, Kardami E (2007) High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol 42:222–233

    PubMed  CAS  Google Scholar 

  22. Kardami E, Fandrich RR (1989) Basic fibroblast growth-factor in atria and ventricles of the vertebrate heart. J Cell Biol 109:1865–1875

    PubMed  CAS  Google Scholar 

  23. Strohman RC, Kardami E (1986) Muscle regeneration revisited: growth factor regulation of myogenic cell replication. Prog Clin Biol Res 226:287–296

    PubMed  CAS  Google Scholar 

  24. Kardami E, Spector D, Strohman RC (1985) Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc Natl Acad Sci USA 82:8044–8047

    PubMed  CAS  Google Scholar 

  25. Bossard C, Laurell H, Van den Berghe L, Meunier S, Zanibellato C, Prats H. (2003) Translokin is an intracellular mediator of FGF-2 trafficking. Nat Cell Biol 5:433–439

    PubMed  CAS  Google Scholar 

  26. Bikfalvi A, Savona C, Perollet C, Javerzat S (1998) New insights in the biology of fibroblast growth factor-2. Angiogenesis 1:155–173

    PubMed  CAS  Google Scholar 

  27. Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S (2003) Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell 95:169–178

    PubMed  CAS  Google Scholar 

  28. Powell PP, Klagsbrun M (1991) Three forms of rat basic fibroblast growth factor are made from a single mRNA and localize to the nucleus. J Cell Physiol 148:202–210

    PubMed  CAS  Google Scholar 

  29. Riese J, Zeller R, Dono R (1995) Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation. Mech Dev 49:13–22

    PubMed  CAS  Google Scholar 

  30. Kardami E, Murphy LJ, Liu L, Padua RR, Fandrich RR (1990) Characterization of two preparations of antibodies to basic fibroblast growth factor which exhibit distinct patterns of immunolocalization. Growth Factors 4:69–80

    PubMed  CAS  Google Scholar 

  31. Claus P, Doring F, Gringel S, Muller-Ostermeyer F, Fuhlrott J, Kraft T, Grothe C (2003) Differential intranuclear localization of fibroblast growth factor-2 isoforms and specific interaction with the survival of motoneuron protein. J Biol Chem 278:479–485

    PubMed  CAS  Google Scholar 

  32. Endoh M, Pulsinelli WA, Wagner JA (1994) Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Brain Res Mol Brain Res 22:76–88

    PubMed  CAS  Google Scholar 

  33. Peifley KA, Winkles JA (1998) Angiotensin II and endothelin-1 increase fibroblast growth factor-2 mRNA expression in vascular smooth muscle cells. Biochem Biophys Res Commun 242:202–208

    PubMed  CAS  Google Scholar 

  34. Detillieux KA, Meij JTA, Kardami E, Cattini PA (1999) alpha(l)-Adrenergic stimulation of FGF-2 promoter in cardiac myocytes and in adult transgenic mouse hearts. Am J Physiol Heart Circ Physiol 276:H826–H833

    CAS  Google Scholar 

  35. Jimenez SK, Sheikh F, Jin Y, Detillieux KA, Dhaliwal J, Kardami E, Cattini PA (2004) Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovasc Res 62:548–557

    PubMed  CAS  Google Scholar 

  36. Jimenez SK, Kardami E, Cattini PA (2004) FGF-2 autoregulation in cardiac myocytes. J Mol Cellular Cardiol 36:625–625

    Google Scholar 

  37. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19:505–514

    PubMed  CAS  Google Scholar 

  38. Bonnal S, Schaeffer C, Creancier L, Clamens S, Moine H, Prats AC, Vagner S. (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278:39330–39336

    PubMed  CAS  Google Scholar 

  39. Gonzalez-Herrera IG, Prado-Lourenco L, Teshima-Kondo S, Kondo K, Cabon F, Arnal JF, Bayard F, Prats AC (2006) IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 34:17–21

    PubMed  CAS  Google Scholar 

  40. Klagsbrun M, Smith S, Sullivan R, Shing Y, Davidson S, Smith JA, Sasse J (1987) Multiple forms of basic fibroblast growth factor: amino-terminal cleavages by tumor cell- and brain cell-derived acid proteinases. Proc Natl Acad Sci USA 84:1839–1843

    PubMed  CAS  Google Scholar 

  41. Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E (1990) Calcium protects pituitary basic fibroblast growth factors from limited proteolysis by co-purifying proteases. Biochem Biophys Res Commun 173:1116–1122

    PubMed  CAS  Google Scholar 

  42. Kawamoto A, Kawata H, Akai Y, Katsuyama Y, Takase E, Sasaki Y, Tsujimura S, Sakaguchi Y, Iwano M, Fujimoto S et al (1998) Serum levels of VEGF and basic FGF in the subacute phase of myocardial infarction. Int J Cardiol 67:47–54

    PubMed  CAS  Google Scholar 

  43. O’Brien TS, Smith K, Cranston D, Fuggle S, Bicknell R, Harris AL (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol 76:311–314

    Article  PubMed  CAS  Google Scholar 

  44. Soutter AD, Nguyen M, Watanabe H, Folkman J (1993) Basic fibroblast growth factor secreted by an animal tumor is detectable in urine. Cancer Res 53:5297–5299

    PubMed  CAS  Google Scholar 

  45. Fujimoto K, Ichimori Y, Kakizoe T, Okajima E, Sakamoto H, Sugimura T, Terada M (1991) Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem Biophys Res Commun 180:386–392

    PubMed  CAS  Google Scholar 

  46. Santiago JJR, Fandrich R, Kardami E. (2005) Angiotensin-II stimulates expression and release of prohypertrophic hi-FGF-2 molecule by cardiac fibroblasts. J Mol Cellular Cardiol 38:834–834

    Google Scholar 

  47. Quarto N, Fong KD, Longaker MT (2005) Gene profiling of cells expressing different FGF-2 forms. Gene 356:49–68

    PubMed  CAS  Google Scholar 

  48. Ma X, Hirst C, Cattini PA, Kirshenbaum L, Kardami E (2006) Nuclear FGF-2 triggers reciprocal communication between nucleus and mitochondria resulting in ERK1/2 pathway-dependent chromatin compaction and cell death. Circulation 114:48–48

    Google Scholar 

  49. Smith JA, Madden T, Vijjeswarapu M, Newman RA (2001) Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol 62:469–472

    PubMed  CAS  Google Scholar 

  50. Florkiewicz RZ, Anchin J, Baird A. (1998) The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+, K+-ATPase. J Biol Chem 273:544–551

    PubMed  CAS  Google Scholar 

  51. Taverna S, Ghersi G, Ginestra A, Rigogliuso S, Pecorella S, Alaimo G, Saladino F, Dolo V, Dell’Era P, Pavan A et al (2003) Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. J Biol Chem 278:51911–51919

    PubMed  CAS  Google Scholar 

  52. Clarke MS, Caldwell RW, Chiao H, Miyake K, McNeil PL (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res 76:927–934

    PubMed  CAS  Google Scholar 

  53. Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA (2001) Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol Heart Circ Physiol 280:H1039–1050

    PubMed  CAS  Google Scholar 

  54. Kaye D, Pimental D, Prasad S, Maki T, Berger HJ, McNeil PL, Smith TW, Kelly RA (1996) Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 97:281–291

    PubMed  CAS  Google Scholar 

  55. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743

    PubMed  CAS  Google Scholar 

  56. Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D. (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186

    PubMed  CAS  Google Scholar 

  57. Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol 185:45–106

    PubMed  CAS  Google Scholar 

  58. Jin Y, Pasumarthi KB, Bock ME, Lytras A, Kardami E, Cattini PA (1994) Cloning and expression of fibroblast growth factor receptor-1 isoforms in the mouse heart: evidence for isoform switching during heart development. J Mol Cell Cardiol 26:1449–1459

    PubMed  CAS  Google Scholar 

  59. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708

    PubMed  CAS  Google Scholar 

  60. Chua CC, Rahimi N, Forsten-Williams K, Nugent MA (2004) Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 94:316–323

    PubMed  CAS  Google Scholar 

  61. Maher PA (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134:529–536

    PubMed  CAS  Google Scholar 

  62. Reilly JF, Maher PA (2001) Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152:1307–1312

    PubMed  CAS  Google Scholar 

  63. Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787

    PubMed  CAS  Google Scholar 

  64. Bouche G, Baldin V, Belenguer P, Prats H, Amalric F (1994) Activation of rDNA transcription by FGF-2: key role of protein kinase CKII. Cell Mol Biol Res 40:547–554

    PubMed  CAS  Google Scholar 

  65. Walker DM, Yellon DM (1992) Ischaemic preconditioning: from mechanisms to exploitation. Cardiovasc Res 26:734–739

    Article  PubMed  CAS  Google Scholar 

  66. Bolli R. (2000) The late phase of preconditioning. Circ Res 87:972–983

    PubMed  CAS  Google Scholar 

  67. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240

    PubMed  CAS  Google Scholar 

  68. Yellon DM, Hausenloy DJ (2005) Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat Clin Pract Cardiovasc Med 2:568–575

    PubMed  Google Scholar 

  69. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    PubMed  CAS  Google Scholar 

  70. Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70:212–221

    PubMed  CAS  Google Scholar 

  71. Padua RR, Sethi R, Davey-Forgie SE, Liu L, Dhalla NS, Kardami E (1996) Cardioprotection and basic fibroblast growth factor. Boston, Kluwer Academic Publishers, pp 501–518

    Google Scholar 

  72. Srisakuldee W, Jeyaraman M, Nickel BE, Jiang ZS, Fandrich RR, Kardami E (2005) Pre- as well as post-conditioning cardioprotection by fibroblast growth factor-2 is linked to the phosphorylation of connexin-43 at specific protein kinase C target sites. Circulation 112:U364–U364

    Google Scholar 

  73. Nishida S, Nagamine H, Tanaka Y, Watanabe G (2003) Protective effect of basic fibroblast growth factor against myocyte death and arrhythmias in acute myocardial infarction in rats. Circ J 67:334–339

    PubMed  CAS  Google Scholar 

  74. House SL, Bolte C, Zhou M, Doetschman T, Klevitsky R, Newman G, Schultz Jel J (2003) Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation 108:3140–3148

    PubMed  CAS  Google Scholar 

  75. Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, Wu W, Vondriska TM, Pass JM, Tang XL et al (2002) Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest 109:499–507

    PubMed  CAS  Google Scholar 

  76. Vondriska TM, Zhang J, Song C, Tang XL, Cao X, Baines CP, Pass JM, Wang S, Bolli R, Ping P (2001) Protein kinase C epsilon-Src modules direct signal transduction in nitric oxide-induced cardioprotection: complex formation as a means for cardioprotective signaling. Circ Res 88:1306–1313

    PubMed  CAS  Google Scholar 

  77. Vondriska TM, Klein JB, Ping P (2001) Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: the signaling module hypothesis. Am J Physiol Heart Circ Physiol 280:H1434–1441

    PubMed  CAS  Google Scholar 

  78. Inagaki K, Begley R, Ikeno F, Mochly-Rosen D (2005) Cardioprotection by epsilon-protein kinase C activation from ischemia: continuous delivery and antiarrhythmic effect of an epsilon-protein kinase C-activating peptide. Circulation 111:44–50

    PubMed  CAS  Google Scholar 

  79. Liu GS, Cohen MV, Mochly-Rosen D, Downey JM (1999) Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 31:1937–1948

    PubMed  CAS  Google Scholar 

  80. Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90:390–397

    PubMed  CAS  Google Scholar 

  81. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–976

    PubMed  CAS  Google Scholar 

  82. House SL, Branch K, Newman G, Doetschman T, Schultz Jel J (2005) Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. Am J Physiol Heart Circ Physiol 289:H2167–2175

    PubMed  CAS  Google Scholar 

  83. Doble BW, Ping PP, Kardami E (2000) The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301

    PubMed  CAS  Google Scholar 

  84. Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E (2004) Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. J Cell Sci 117:507–514

    PubMed  CAS  Google Scholar 

  85. Srisakuldee W, Nickel BE, Fandrich RR, Jiang ZS, Kardami E (2006) Administration of FGF-2 to the heart stimulates connexin-43 phosphorylation at protein kinase C target sites. Cell Commun Adhesion 13:13–19

    CAS  Google Scholar 

  86. Yellon DM, Baxter GF (2000) Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 83:381–387

    PubMed  CAS  Google Scholar 

  87. Gross GJ, Auchampach JA (2007) Reperfusion injury: does it exist? J Mol Cell Cardiol 42:12–18

    PubMed  CAS  Google Scholar 

  88. Opie LH (1989) Reperfusion injury and its pharmacologic modification. Circulation 80:1049–1062

    PubMed  CAS  Google Scholar 

  89. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    PubMed  CAS  Google Scholar 

  90. Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Agullo L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70:274–285

    PubMed  CAS  Google Scholar 

  91. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190

    PubMed  CAS  Google Scholar 

  92. Kardami E, Detillieux KA, Jimenez SK, Cattini, PA (2006) Fibroblast growth factor-2 as a therapeutic agent against heart disease. Springer, pp 145–166

  93. Horrigan MC, Malycky JL, Ellis SG, Topol EJ, Nicolini FA (1999) Reduction in myocardial infarct size by basic fibroblast growth factor following coronary occlusion in a canine model. Int J Cardiol 68(Suppl 1):S85–91

    PubMed  Google Scholar 

  94. Horrigan MC, MacIsaac AI, Nicolini FA, Vince DG, Lee P, Ellis SG, Topol EJ (1996) Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 94:1927–1933

    PubMed  CAS  Google Scholar 

  95. Padua RR, Kardami E (1993) Increased basic fibroblast growth factor (bFGF) accumulation and distinct patterns of localization in isoproterenol-induced cardiomyocyte injury. Growth Factors 8:291–306

    PubMed  CAS  Google Scholar 

  96. Engvall E (1995) Structure and function of basement membranes. Int J Dev Biol 39:781–787

    PubMed  CAS  Google Scholar 

  97. Vracko R. (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 77:314–346

    PubMed  CAS  Google Scholar 

  98. D’Amore PA (1990) Modes of FGF release in vivo and in vitro. Cancer Metastasis Rev 9:227–238

    PubMed  CAS  Google Scholar 

  99. Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E (1990) Calcium protects pituitary basic fibroblast growth-factors from limited proteolysis by copurifying proteases. Biochem Biophys Res Commun 173:1116–1122

    PubMed  CAS  Google Scholar 

  100. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    PubMed  CAS  Google Scholar 

  101. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. Faseb J 17:1355–1357

    PubMed  CAS  Google Scholar 

  102. Piper HM, Garcia-Dorado D (1999) Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 68:1913–1919

    PubMed  CAS  Google Scholar 

  103. Inagaki K, Churchill E, Mochly-Rosen D (2006) Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res 70:222

    PubMed  CAS  Google Scholar 

  104. Anversa P, Leri A, Kajstura J (2006) Cardiac regeneration. J Am Coll Cardiol 47:1769–1776

    PubMed  Google Scholar 

  105. Gude N, Muraski J, Rubio M, Kajstura J, Schaefer E, Anversa P, Sussman MA (2006) Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res 99:381–388

    PubMed  CAS  Google Scholar 

  106. Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421

    PubMed  CAS  Google Scholar 

  107. Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287:98–105

    PubMed  CAS  Google Scholar 

  108. Kofidis T, de Bruin JL, Yamane T, Tanaka M, Lebl DR, Swijnenburg RJ, Weissman IL, Robbins RC (2005) Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 111:2486–2493

    PubMed  CAS  Google Scholar 

  109. Song H, Kwon K, Lim S, Kang SM, Ko YG, Xu Z, Chung JH, Kim BS, Lee H, Joung B et al (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 19:402–407

    PubMed  CAS  Google Scholar 

  110. Dvorak P, Dvorakova D, Hampl A (2006) Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 580:2869–2874

    PubMed  CAS  Google Scholar 

  111. Han W, Yu Y, Liu XY (2006) Local signals in stem cell-based bone marrow regeneration. Cell Res 16:189–195

    PubMed  Google Scholar 

  112. Wang Y, Johnsen HE, Mortensen S, Bindslev L, Ripa RS, Haack-Sorensen M, Jorgensen E, Fang W, Kastrup J (2006) Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart 92:768–774

    PubMed  CAS  Google Scholar 

  113. Ayach BB, Yoshimitsu M, Dawood F, Sun M, Arab S, Chen M, Higuchi K, Siatskas C, Lee P, Lim H et al (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA 103:2304–2309

    PubMed  CAS  Google Scholar 

  114. Freed DH, Cunnington RH, Dangerfield AL, Sutton JS, Dixon IM (2005) Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc Res 65:782–792

    PubMed  CAS  Google Scholar 

  115. Chien KR (2000) Myocyte survival pathways and cardiomyopathy: implications for trastuzumab cardiotoxicity. Semin Oncol 27:9–14; discussion 92–100

    Google Scholar 

  116. Palmen M, Daemen MJ, De Windt LJ, Willems J, Dassen WR, Heeneman S, Zimmermann R, Van Bilsen M, Doevendans PA (2004) Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism. J Am Coll Cardiol 44:1113–1123

    PubMed  CAS  Google Scholar 

  117. Buehler A, Martire A, Strohm C, Wolfram S, Fernandez B, Palmen M, Wehrens XH, Doevendans PA, Franz WM, Schaper W et al (2002) Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. Cardiovasc Res 55:768–777

    PubMed  CAS  Google Scholar 

  118. Cuevas P, Carceller F, Martinez-Coso V, Asin-Cardiel E, Gimenez-Gallego G (2000) Fibroblast growth factor cardioprotection against ischemia-reperfusion injury may involve K+ ATP channels. Eur J Med Res 5:145–149

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported (EK, PAC) by the Canadian Institutes for Health Research. ZS-J was supported by a postdoctoral award from the IMPACT-CIHR program. JJ-S and SKJ had studentship awards from the Manitoba Health Research Council and the Heart and Stroke Foundation of Canada, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elissavet Kardami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kardami, E., Detillieux, K., Ma, X. et al. Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 12, 267–277 (2007). https://doi.org/10.1007/s10741-007-9027-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9027-0

Keywords

Navigation