Skip to main content
Log in

Lévy Flights in Dobe Ju/’hoansi Foraging Patterns

  • Published:
Human Ecology Aims and scope Submit manuscript

Abstract

We analyzed data on Ju/’hoansi hunter–gatherer foraging patterns and found that their movements between residence camps can be modeled as a Lévy flight. The step lengths of their movements scale as a power law with an exponent μ = 1.97. Their wait times (residence times) at the camps also scale as a power law (μ = 1.45). A Lévy flight with step lengths μ = 2 is an optimal search pattern for scarce, randomly located targets; thus, the Ju/’hoansi foraging pattern may approach an optimal search in this area of sparse plant and animal resources. These findings affect the application of optimal foraging theory to humans in anthropology and archaeology because they alter the way in which search and travel times should be quantified. These results may also carry implications for the study of other patterns of human movement, such as demic diffusion and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The Ju/’hoansi have in the past been known by other names including !Kung and Bushmen.

  2. Travel and search times seem to be proportional to distance in the Ju/’hoansi case. Lee (1979, p. 193) reports that the Ju/’hoansi travel 4–5 km/h with a load, and we know of no ethnographic evidence indicating that this rate varies nonlinearly with distance.

References

  • Abrams, P. A. (1984). Foraging Time Optimization and Interactions in Food Webs. American Naturalist 124(1): 80–96.

    Article  Google Scholar 

  • Ammerman, A. J., and Cavalli-Sforza, L. L. (1979). The wave of advance model for the spread of agriculture in Europe. In Renfrew, C., and Cooke, K. L. (eds.), Transformations: Mathematical Approaches to Culture Change, Academic, New York, pp. 275–293.

    Google Scholar 

  • Anthony, D. W. (1990). Migration in Archaeology: The Baby and the Bathwater. American Anthropologist 92(4): 895–914.

    Article  Google Scholar 

  • Atkinson, R. P. D., Rhodes, C. J. D., Macdonald, W., and Anderson, R. M. (2002). Scale-free Dynamics in the Movement Patterns of Jackals. Oikos 98: 134–140.

    Article  Google Scholar 

  • Bartumeus, F., Peters, F., Pueyo, S., Marrasé, C., and Catalan, J. (2003). Helical Lévy Walks: Adjusting Searching Statistics to Resource Availability in Microzooplankton. Proceedings of the National Academy of Sciences 100(22): 12771–12775.

    Article  Google Scholar 

  • Bartumeus, F., da Luz, M. G. E., Viswanathan, G. M., and Catalan, J. (2005). Animal Search Strategies: A Quantitative Random Walk Analysis. Ecology 86(11): 3078–3087.

    Google Scholar 

  • Belovsky, G. E. (1987). Hunter–gatherer Foraging: A Linear Programming Approach. Journal of Anthropological Archaeology 6(1): 29–76.

    Article  Google Scholar 

  • Belovsky, G. E. (1988). A Optimal Foraging-based Model of Hunter–gatherer Population Dynamics. Journal of Anthropological Archaeology 7(4): 329–372.

    Article  Google Scholar 

  • ben-Avraham, D., and Havlin, S. (2000). Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  • Boyer, D., Miramontes, O., Ramos-Fernández, G., Mateos, J. L., and Cocho, G. (2004). Modeling the Searching Behavior of Social Monkeys. Physica A 342: 329–335.

    Article  Google Scholar 

  • Charnov, E. L. (1976). Optimal Foraging, the Marginal Value Theorem. Theoretical Population Biology 9(2): 129–136.

    Article  Google Scholar 

  • Charnov, E. L., and Orians, G. H. (1973). Optimal Foraging: Some Theoretical Expectations. Unpublished MS. Available at <http://www.biology.unm.edu/Charnov/73OptimalForaging.pdf>.

  • Cole, B. J. (1995). Fractal Time in Animal Behavior: The Movement Activity of Drosophila. Animal Behaviour 50: 1317–1324.

    Article  Google Scholar 

  • da Luz, M. G. E., Buldyrev, S. V., Havlin, S., Raposo, E. P., Stanley, H. E., and Viswanathan, G. M. (2001). Improvements in the Statistical Approach to Random Lévy Flight Searches. Physica A 295: 89–92.

    Article  Google Scholar 

  • Fisher, R. A. (1937). The Wave of Advance of Advantageous Genes. Annals of Eugenics 7: 355–369.

    Google Scholar 

  • Green, R. F. (1987). Stochastic models of optimal foraging. In Kamil, A. C., Krebs, J. R., and Pullman, H. R. (eds.), Foraging Behavior, Plenum, New York, pp. 273–302.

    Google Scholar 

  • Harpending, H. (1976). Regional variation in !Kung populations. In Lee, R. B., and DeVore, I. (eds.), Kalahari Hunter–Gatherers, Harvard University Press, Cambridge, pp. 152–165.

    Google Scholar 

  • Hawkes, K., and O’Connell, J. (1981). Affluent Hunters? Some Comments in Light of the Alyawara Case. American Anthropologist 83: 622–626.

    Article  Google Scholar 

  • Hawkes, K., and O’Connell, J. (1985). Optimal Foraging Models and the Case of the !Kung. American Anthropologist 87: 401–405.

    Article  Google Scholar 

  • Hoddle, M. S. (2003). The Effect of Prey Species and Environmental Complexity on the Functional Response of Franklinothrips orizabensis: A Test of the Fractal Foraging Model. Ecological Entomology 28: 309–318.

    Article  Google Scholar 

  • Johnson, J. B., and Omland, K. S. (2004). Model Selection in Ecology and Evolution. Trends in Ecology and Evolution 19(2): 101–108.

    Article  Google Scholar 

  • Kelly, R. L. (1995). The Foraging Spectrum: Diversity in Hunter–Gatherer Lifeways, Smithsonian Institution, Washington.

    Google Scholar 

  • Lee, R. B. (1979). The !Kung San: Men, Women, And Work in a Foraging Society, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lee, R. B. (1993). The Dobe Ju/’hoansi, Harcourt Brace, New York.

    Google Scholar 

  • Lee, R. B., and DeVore, I. (eds.) (1976). Kalahari Hunter–Gatherers: Studies of the !Kung San and their Neighbors, Harvard University Press, Cambridge.

  • Liebovitch, L. S. (1998). Fractals and Chaos Simplified for the Life Sciences, Oxford University Press, New York.

    Google Scholar 

  • Liebovitch, L. S., and Scheurle, D. (2000). Two Lessons from Fractals and Chaos. Complexity 5(4): 34–43.

    Article  Google Scholar 

  • Liebovitch, L. S., and Todorov, A. T. (1996). Fractal Dynamics of Human Gait: Stability of Long-range Correlations in Stride Interval Fluctuations. Journal of Applied Physiology 80: 1446–1447.

    Article  Google Scholar 

  • Liebovitch, L. S., Fischbarg, J., and Koniarek, J. (1987). Ion Channel Kinetics: A Model Based on Fractal Scaling Rather than Multistate Markov Processes. Mathematical Biosciences 84: 37–68.

    Article  Google Scholar 

  • Liebovitch, L. S., Todorov, A. T., Zochowski, M., Scheurle, D., Colgin, L., Wood, M. A., Ellenbogen, K. A., Herre, J. M., and Bernstein, R. C. (1999). Nonlinear Properties of Cardiac Rhythm Abnormalities. Physical Review E 59(3): 3312–3319.

    Article  Google Scholar 

  • Liebovitch, L. S., Scheurle, D., Rusek, M., and Zochowski, M. (2001). Fractal Methods to Analyze Ion Channel Kinetics. Methods 24: 359–375.

    Article  Google Scholar 

  • MacArthur, R. H., and Pianka, E. R. (1966). On Optimal Use of a Patchy Environment. American Naturalist 100(916): 603–609.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The Fractal Geometry of Nature, Freeman, New York.

    Google Scholar 

  • Mårell, A., Ball, J. P., and Hofgaard, A. (2002). Foraging and Movement Paths of Female Reindeer: Insights from Fractal Analysis, Correlated Random Walks, and Lévy Flights. Canadian Journal of Zoology 80: 854–865.

    Article  Google Scholar 

  • Marshall, L. (1976). The !Kung of Nyae Nyae, Harvard University Press, Cambridge.

    Google Scholar 

  • Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., and Ayala-Orozco, B. (2003). Lévy Walk Patterns in the Foraging Movements of Spider Monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology 55(3): 223–230.

    Google Scholar 

  • Russell, R. W., Hunt, G. L., Coyle, K. O., and Cooney, R. T. (1992). Foraging in a Fractal Environment: Spatial Patterns in Marine Predator–Prey System. Landscape Ecology 7(3): 195–209.

    Article  Google Scholar 

  • Salmon, M. H. (1989). Efficient explanations and efficient behavior. In Pinsky, V., and Wylie, A. (eds.), Critical Traditions in Contemporary Archaeology, Cambridge University Press, Cambridge, pp. 10–13.

    Google Scholar 

  • Shlesinger, M. F., Zaslavsky, G. M., and Klafter, J. (1993). Strange Kinetics. Nature 363: 31–37.

    Article  Google Scholar 

  • Smith, E. A. (1991). Inujjuamiut Foraging Strategies: Evolutionary Ecology of an Arctic Hunting Economy, Aldine de Gruyter, New York.

    Google Scholar 

  • Stephens, D. W., and Charnov, E. L. (1982). Optimal Foraging: Some Simple Stochastic Models. Behavioral Ecology and Sociobiology 10: 251–263.

    Article  Google Scholar 

  • Stephens, D. W., and Krebs, J. R. (1986). Foraging Theory, Princeton University Press, Princeton.

    Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., and Stanley, H. E. (1996). Lévy Flight Search Patterns of Wandering Albatrosses. Nature 381: 413–415.

    Article  Google Scholar 

  • Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (1999). Optimizing the Success of Random Searches. Nature 401: 911–914.

    Article  Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (2000). Lévy Flights in Random Searches. Physica A 282: 1–12.

    Article  Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (2001). Lévy Flights Search Patterns of Biological Organisms. Physica A 295: 85–88.

    Article  Google Scholar 

  • Viswanathan, G. M., Bartumeus, F., Buldyrev, S. V., Catalan, J., Fulco, U. L., Havlin, S., da Luz, M. G. E., Lyra, M. L., Raposo, E. P., and Stanley, H. E. (2002). Lévy Flight Random Searches in Biological Phenomena. Physica A 314: 208–213.

    Article  Google Scholar 

  • Wijsman, E. M., and Cavalli-Sforza, L. L. (1984). Migration and Genetic Population Structure with Special Reference to Humans. Annual Review of Ecology and Systematics 15: 279–301.

    Article  Google Scholar 

  • Yellen, J. E. (1977). Archaeological Approaches to the Present: Models for Reconstructing the Past, Academic, New York.

    Google Scholar 

  • Yellen, J. E., and Lee, R. B. (1976). The Dobe-/Du/da environment: Background to a hunting and gathering way of life. In Lee, R. B., and DeVore, I. (eds.), Kalahari Hunter–Gatherers: Studies of the !Kung San and their Neighbors, Harvard University Press, Cambridge, pp. 27–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford T. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.T., Liebovitch, L.S. & Glendon, R. Lévy Flights in Dobe Ju/’hoansi Foraging Patterns. Hum Ecol 35, 129–138 (2007). https://doi.org/10.1007/s10745-006-9083-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10745-006-9083-4

Key words

Navigation