Skip to main content

Advertisement

Log in

Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality

  • Published:
Human Ecology Aims and scope Submit manuscript

Abstract

The effects of swidden cultivation on carbon storage and soil quality are outlined and compared to the effects of the intensified production systems that swidden systems of Southeast Asia transform into. Time-averaged aboveground carbon stocks decline by about 90% if the long fallow periods of traditional swidden cultivation are reduced to 4 years and by about 60% if swidden cultivation is converted to oil palm plantations. Stocks of soil organic carbon (SOC) in tree plantations are 0–40% lower than stocks in swidden cultivation, with the largest losses found in mechanically established oil palm plantations. Impacts of tree plantations on soil quality are to a large extent determined by management. Conversion of swiddening to continuous annual cropping systems brings about substantial losses of time-averaged aboveground carbon stocks, reductions of SOC stocks and generally leads to declining soil quality. Knowledge of carbon storage in belowground biomass of tree based systems of the tropics is sparse but failure to include this pool in carbon inventories may significantly underestimate the total biomass of the systems. Moreover, studies that consider the ecological reasons behind farmers’ land use decisions as well as spatial variability in biogeophysical and edaphological parameters are needed to evaluate the effects of the ongoing land use transitions in Southeast Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., and Malingreau, J. P. (2002). Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science 297: 999–1002. doi:10.1126/science.1070656.

    Article  Google Scholar 

  • Altieri, M. A., and Nicholls, C. I. (2003). Soil Fertility Management and Insect Pests: Harmonizing Soil and Plant Health in Agroecosystems. Soil and Tillage Research 72: 203–211. doi:10.1016/S0167-1987(03)00089-8.

    Article  Google Scholar 

  • Andriesse, J. P. (1989). Nutrient management through shifting cultivation. A comparative study on cycling of nutrients in traditional farming systems of Malaysia and Sri Lanka. In van der Heide, J. (ed.), Nutrient Management for Food Crop Production in Tropical Farming Systems. Institute for Soil Fertility and Universitas Brawijaya, Haren, pp. 29–61.

    Google Scholar 

  • Andriesse, J. P., and Koopmans, T. T. (1984). A Monitoring Study on Nutrient Cycles in Soils Used for Shifting Cultivation under Various Climatic Conditions in Tropical Asia. I. The Influence of Simulated Burning on Form and Availability of Plant Nutrients. Agriculture, Ecosystems & Environment 12: 1–16. doi:10.1016/0167-8809(84)90057-4.

    Article  Google Scholar 

  • Andriesse, J. P., and Schelhaas, R. M. (1987a). A Monitoring Study of Nutrient Cycles in Soils Used for Shifting Cultivation under Various Climatic Conditions in Tropical Asia. II. Nutrient Stores in Biomass and Soil—Results of Baseline Studies. Agriculture, Ecosystems & Environment 19: 285–310. doi:10.1016/0167-8809(87)90058-2.

    Article  Google Scholar 

  • Andriesse, J. P., and Schelhaas, R. M. (1987b). A Monitoring Study on Nutrient Cycles in Soils Used for Shifting Cultivation under Various Climatic Conditions in Tropical Asia. III. The Effects of Land Clearing Through Burning on Fertility Level. Agriculture, Ecosystems & Environment 19: 311–332. doi:10.1016/0167-8809(87)90059-4.

    Article  Google Scholar 

  • Arunachalam, A. (2002). Dynamics of Soil Nutrients and Microbial Biomass During First Year Cropping in an 8-year Jhum Cycle. Nutrient Cycling in Agroecosystems 64: 283–291. doi:10.1023/A:1021488621394.

    Article  Google Scholar 

  • Aumtong, S., Magid, J., Bruun, S., and de Neergaard, A. (2009). Relating Soil Carbon Fractions to Land Use in Sloping Uplands in Northern Thailand. Agriculture, Ecosystems & Environment 131: 229–239. doi:10.1016/j.agee.2009.01.013.

    Article  Google Scholar 

  • Aweto, A. O. (1995). Organic Carbon Diminution and Estimates of Carbon Dioxide Release from Plantation Soil. Environmentalist 15: 10–15. doi:10.1007/BF01888885.

    Article  Google Scholar 

  • Batjes, N. H. (1996). Total Carbon and Nitrogen in the Soils of the World. European Journal of Soil Science 47: 151–163. doi:1111/j.1365-2389.1996.tb01386.x.

    Article  Google Scholar 

  • Beare, M. H. (1994). Aggregate-Protected and Unprotected Organic Matter Pools in Conventional- and No-Tillage Soils. Soil Science Society of America Journal 58: 787–795.

    Google Scholar 

  • Brady, N. C. (1996). Alternatives to Slash-and-Burn: A Global Imperative. Agriculture, Ecosystems & Environment 58: 3–11. doi:10.1016/0167-8809(96)00650-0.

    Article  Google Scholar 

  • Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests, A Primer. FAO Forestry Paper 134. FAO, Rome.

    Google Scholar 

  • Bruce, J. P., Frome, M., Haites, E., Janzen, H., and Paustian, K. (1999). Carbon Sequestration in Soils. Journal of Soil and Water Conservation 54: 382–389.

    Google Scholar 

  • Bruun, T. B., Mertz, O., and Elberling, B. (2006). Linking Yields of Upland Rice in Shifting Cultivation to Fallow Length and Soil Properties. Agriculture, Ecosystems & Environment 113: 139–149. doi:10.1016/j.agee.2005.09.012.

    Article  Google Scholar 

  • Cairns, M. A., Brown, S., Helmer, E. H., and Baumgardner, G. A. (1997). Root Biomass Allocation in the World’s Upland Forests. Oecologia 11: 1–11. doi:10.1007/s004420050201.

    Article  Google Scholar 

  • Carter, M. R., Gregorich, E. G., Anderson, D. W., Doran, J. W., Janzen, H. H., and Pierce, F. J. (1997). Concepts of soil quality and their significance. In Gregorich, E. G., and Carter, M. R. (eds.), Soil Quality for Crop Production and Ecosystem Health. Elsevier, Amsterdam, pp. 1–19.

    Chapter  Google Scholar 

  • Carvalho, J. L. N., Cerri, C. E. P., Feigl, B. J., Piccolo, M. C., Godinho, V. P., and Cerri, C. C. (2009). Carbon Sequestration in Agricultural Soils in the Cerrado Region of the Brazilian Amazon. Soil and Tillage Research 103: 342–349. doi:10.1016/j.still.2008.10.022.

    Article  Google Scholar 

  • Das, D. K., and Chaturvedi, O. P. (2008). Root Biomass and Distribution of Five Agroforestry Tree Species. Agroforestry Systems 74: 223–230. doi:10.1007/s10457-008-9159-9.

    Article  Google Scholar 

  • Davidson, E. A., and Ackerman, I. L. (1993). Changes in Soil Carbon Inventories Following Cultivation of Previously Untilled Soils. Biogeochemistry 20: 161–193. doi:10.1007/BF00000786.

    Article  Google Scholar 

  • de Neergaard, A., Magid, J., and Mertz, O. (2008). Soil Erosion from Shifting Cultivation and other Smallholder Land Use in Sarawak, Malaysia. Agriculture, Ecosystems & Environment 125: 182–190. doi:10.1016/j.agee.2007.12.013.

    Article  Google Scholar 

  • DeBano, L. F., Neary, D. G., and Ffolliott, P. F. (1998). Fire’s Effects on Ecosystems. Wiley, New York.

    Google Scholar 

  • Detwiler, R. (1986). Land Use Change and the Global Carbon Cycle: The Role of Tropical Soils. Biogeochemistry 2: 67–93. doi:10.1007/BF02186966.

    Article  Google Scholar 

  • Devendra, C., and Thomas, D. (2002). Smallholder Farming Systems in Asia. Agricultural Systems 71: 17–25. doi:10.1016/S0308-521X(01)00033-6.

    Article  Google Scholar 

  • Doran, J. W., and Parkin, T. B. (1994). Defining and assessing soil quality. In Doran, J. W., Coleman, D. C., Bezdicek, D. F., and Steward, B. A. (eds.), Defining Soil Quality for Sustainable Environment. Soil Science of America, Madison, pp. 3–21Special publication No 35.

    Google Scholar 

  • Eaton, J. M., and Lawrence, D. (2009). Loss of Carbon Sequestration Potential After Several Decades of Shifting Cultivation in the Southern Yucatan. Forest Ecology and Management (in press).

  • Ewel, J., Berish, C., Brown, B., Price, N., and Raich, J. (1981). Slash and Burn Impacts on a Costa Rican Wet Forest Site. Ecology 62: 816–829. doi:10.2307/1937748.

    Article  Google Scholar 

  • Feller, C., and Beare, M. H. (1997). Physical Control of Soil Organic Matter Dynamics in the Tropics. Geoderma 79: 69–116. doi:10.1016/S0016-7061(97)00039-6.

    Article  Google Scholar 

  • Foody, G. M., Cuttler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., and Douglas, I. (2001). Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data. Global Ecology and Biogeography 10: 379–387. doi:10.1046/j.1466-822X.2001.00248.x.

    Article  Google Scholar 

  • Fox, J. (2000). How Blaming ‘Slash and Burn’ Farmers is Deforesting Mainland Southeast Asia. Asia Pacific Issues 47: 1–8.

    Google Scholar 

  • Fujisaka, S., Harrington, L., and Hobbs, P. (1994). Rice–Wheat in South Asia: Systems and Long-Term Priorities Established through Diagnostic Research. Agricultural Systems 46: 169–187. doi:10.1016/0308-521X(94)90096-X.

    Article  Google Scholar 

  • Funakawa, S., Tanaka, S., Shinjyo, H., Kaewkhongkha, T., Hattori, T., and Yonebayashi, K. (1997). Ecological Study on the Dynamics of Soil Organic Matter and its Related Properties in Shifting Cultivation Systems of Northern Thailand. Soil Science and Plant Nutrition 43: 681–693.

    Google Scholar 

  • Garrity, D. P. (1993). Sustainable land-use systems for sloping uplands in South East Asia. In Ragland, J., Lal, R. (eds.), ASA Special Publication No. 56, 41–66.

  • Giardina, C. P., Sanford, R. L. Jr., Døckersmith, I. C., and Jaramillo, V. J. (2000). The Effects of Slash Burning on Ecosystem Nutrients During the Land Preparation Phase of Shifting Cultivation. Plant and Soil 220: 247–260. doi:10.1023/A:1004741125636.

    Article  Google Scholar 

  • Grace, J. (2004). Understanding and Managing the Global Carbon Cycle. Journal of Ecology 92: 189–202. doi:10.1111/j.0022-0477.2004.00874.x.

    Article  Google Scholar 

  • Greenland, D. J. (1975). Bringing the Green Revolution to the Shifting Cultivator. Science 190: 841–844.

    Google Scholar 

  • Halenda, C. J. (1989). The Ecology of Fallow Forest After Shifting Cultivation in Niah Forest Reserve. Forest Research Report. Forest Department, Kuching.

    Google Scholar 

  • Halenda, C. J. (1993). Aboveground Biomass Production and Nutrient Accumulation of a Gmelina arborera Plantation in Sarawak, Malaysia. Journal of Tropical Forest Science 5: 429–439.

    Google Scholar 

  • Hamdan, J., Burnham, C. P., and Ruhana, B. (2000). Degradation Effect of Slope Terracing on Soil Quality for Elaeis guineensis Jacq. (Oil Palm) Cultivation. Land Degradation & Development 11: 181–193. doi:10.1002/(SICI)1099-145X(200003/04)11:2<181::AID-LDR377>3.0.CO;2-U.

    Article  Google Scholar 

  • Harwood, R. R. (1996). Development Pathways Toward Sustainable Systems Following Slash-and-Burn. Agriculture, Ecosystems and Environment 58: 75–86. doi:10.1016/0167-8809(95)00655-9.

    Article  Google Scholar 

  • Hashimotio, T., Kojima, K., Tange, T., and Sasaki, S. (2000). Changes in Carbon Storage in Fallow Forests in the Tropical Lowlands of Borneo. Forest Ecology and Management 126: 331–337. doi:10.1016/S0378-1127(99)00104-8.

    Article  Google Scholar 

  • Henson, I. E. (2003). The Malaysian National Average Oil Palm: Concept and Evaluation. Oil Palm Bulletin 14: 15–27.

    Google Scholar 

  • Hölscher, D., Ludwig, B., Moller, R. F., and Folster, H. (1997). Dynamic of Soil Chemical Parameters in Shifting Agriculture in the Eastern Amazon. Agriculture, Ecosystems and Environment 66: 153–163. doi:10.1016/S0167-8809(97)00077-7.

    Article  Google Scholar 

  • Houghton, R. A., Skole, D. L., and Lefkowitz, D. S. (1991). Changes in the Landscape of Latin America between 1850 and 1985 Forest II. Net Release of CO2 to the Atmosphere. Ecology and Management 38: 173–199. doi:10.1016/0378-1127(91)90141-H.

    Article  Google Scholar 

  • Hughes, R. F., Kauffman, J. B., and Cummings, D. L. (2000). Fire in the Brazilian Amazon. Oecologia 124: 574–588. doi:10.1007/s004420000416.

    Article  Google Scholar 

  • Ingram, J. S. I., and Fernandes, E. C. M. (2001). Managing Carbon Sequestration in Soils: Concepts and Terminology. Agriculture, Ecosystems & Environment 87: 111–117. doi:10.1016/S0167-8809(01)00145-1.

    Article  Google Scholar 

  • IPCC. (2007). Synthesis report. An Assessment of the Intergovernmental Panel on Climate Change. Valencia.

  • Jepsen, M. R. (2006). Above-Ground Carbon Stocks in Tropical Fallows, Sarawak, Malaysia. Forest Ecology and Management 225: 287–295. doi:10.1016/j.foreco.2006.01.005.

    Article  Google Scholar 

  • Jobbaggy, E. G., and Jackson, R. B. (2000). The Vertical Distribution of Soil Organic Carbon and its Relation to Climate and Vegetation. Ecological Applications 10: 423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.

    Article  Google Scholar 

  • Johnson, C. M., Vieira, I. C. G., Zarin, D. J., and Frizano, J. (2001). Carbon and Nutrient Storage in Primary and Secondary Forest in Eastern Amazônia. Forest Ecology and Management 147: 245–252. doi:10.1016/S0378-1127(00)00466-7.

    Article  Google Scholar 

  • Jordan, C. F. (1985). Nutrient Cycling in Tropical Forest Ecosystems. Principles and their Practical Application in Management of Conservation. Wiley, New York.

    Google Scholar 

  • Jordan, C. F. (1989). An Amazonian Rain Forest. The Structure and Function of a Nutrient Stressed Ecosystem and the Impact of Slash-and-burn Agriculture. Parthenon, Lancs.

    Google Scholar 

  • Juo, A. S. R., and Lal, R. (1977). The Effect of Fallow and Continuous Cultivation on the Chemical and Physical Properties of an Alfisol in Western Nigeria. Plant and Soil 47: 567–584. doi:10.1007/BF00011027.

    Article  Google Scholar 

  • Juo, A. S. R., and Manu, A. (1996). Chemical Dynamics in Slash-and-Burn Agriculture. Agriculture, Ecosystems and Environment 58: 49–60. doi:10.1016/0167-8809(95)00656-7.

    Article  Google Scholar 

  • Juo, A. S. R., Franzluebbers, K., Dabiri, A., and Ikhile, B. (1995). Changes in Soil Properties during Long-Term Fallow and Continuous Cultivation after Forest Clearing in Nigeria. Agriculture, Ecosystems & Environment 56: 9–18. doi:10.1016/0167-8809(95)00635-4.

    Article  Google Scholar 

  • Kauffman, J. B., Sanford, R. L., Cummings, D. L., Salcedo, I. H., and Sampaio, E. V. S. B. (1993). Biomass and Nutrient Dynamics Associated with Slash Fires in Neotropical Dry Forests. Ecology 74: 140–151. doi:10.2307/1939509.

    Article  Google Scholar 

  • Kennard, D. K., and Gholz, H. L. (2001). Effects of High- and Low-intensity Fires on Soil Properties and Plant Growth in a Bolivian Dry Forest. Plant and Soil 234: 119–129. doi:10.1023/A:1010507414994.

    Article  Google Scholar 

  • Ketterings, Q. M., Ceo, R., van Noordwijk, M., Ambagau, Y., and Palm, C. (2001). Reducing Uncertainty in the Use of Allometric Biomass Equations for Predicting Above-Ground Tree Biomass in Mixed Secondary Forests. Forest Ecology and Management 146: 199–209. doi:10.1016/S0378-1127(00)00460-6.

    Article  Google Scholar 

  • Kho, L. P., and Wilcove, D. S. (2008). Is Oil Palm Agriculture Really Destroying Tropical Biodiversity. Conservation Letters 1: 60–64. doi:10.1111/j.1755-263X.2008.00011.x.

    Article  Google Scholar 

  • Kleinman, P. J. A., Pimentel, D., and Bryant, R. B. (1995). The Ecological Sustainability of Slash-and-Burn Agriculture. Agriculture, Ecosystems & Environment 52: 235–249. doi:10.1016/0167-8809(94)00531-I.

    Article  Google Scholar 

  • Kleinman, P. J. A., Bryant, R. B., and Pimentel, D. (1996). Assessing Ecological Sustainability of Slash-and-Burn Agriculture through Soil Fertility Indicators. Agronomy Journal 88: 122–127.

    Google Scholar 

  • Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Singh, B., Singh, Y., Singh, Y., Singh, P., Kundu, A. L., Sakal, R., Ram, N., Regmi, A. P., Gami, S. K., Bhandari, A. L., Amin, R., Yadav, C. R., Bhattarai, E. M., Das, S., Aggarwal, H. P., Gupta, R. K., Hobbs, P. R. (20-2-2003). How Extensive are Yield Declines in Long-Term Rice–Wheat Experiments in Asia? Field Crops Research 81: 159–180. doi:10.1016/S0378-4290(02)00219-8.

  • Lal, R. (1997). Degradation and Resilience of Soils. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences 352: 869–889. doi:10.1098/rstb.1997.0078.

    Article  Google Scholar 

  • Lal, R. (2000). Soil Management in Developing Countries. Soil Science 165: 57–72. doi:10.1097/00010694-200001000-00008.

    Article  Google Scholar 

  • Lal, R. (2004a). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304: 1623–1627. doi:10.1126/science.1097396.

    Article  Google Scholar 

  • Lal, R. (2004b). Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 123: 1–22. doi:10.1016/j.geoderma.2004.01.032.

    Article  Google Scholar 

  • Lal, R., and Bruce, J. P. (1999). The Potential of World Cropland Soils to Sequester C and Mitigate the Greenhouse Effect. Environmental Science & Policy 2: 177–185. doi:10.1016/S1462-9011(99)00012-X.

    Article  Google Scholar 

  • Lal, R., and Cummings, D. J. (1979). Clearing a Tropical Forest I. Effects on Soil and Micro-climate. Field Crops Research 2: 91–107. doi:10.1016/0378-4290(79)90012-1.

    Article  Google Scholar 

  • Lawrence, D., and Schlesinger, W. H. (2001). Changes in Soil Phosphorus during 200 Years of Shifting Cultivation in Indonesia. Ecology 82: 2769–2780.

    Google Scholar 

  • Lawrence, D., Suma, V., and Mogea, J. P. (2005). Change in Species Composition with Repeated Shifting Cultivation: Limited Role of Soil Nutrients. Ecological Applications 15: 1952–1967. doi:10.1890/04-0841.

    Article  Google Scholar 

  • Lawrence, D., D’Odorico, P., DeLonge, M., Diekmann, L., Das, R., and Eaton, J. M. (2007). Ecological Feedbacks Following Deforestation Create the Potential for a Catastrophic Ecosystem Shift in Tropical Dry Forest. Proceedings of the National Academy of Sciences 104: 20696–20701. doi:10.1073/pnas.0705005104.

    Article  Google Scholar 

  • McCarthy, J. F., and Cramb, R. A. (2009). Policy Narratives, Landholder Engagement, and Oil Palm Expansion on the Malaysian and Indonesian Frontiers. The Geographical Journal 175: 112–123.

    Google Scholar 

  • Mertz, O. (2002). The Relationship Between Fallow Length and Crop Yields in Shifting Cultivation: A Rethinking. Agroforestry Systems 55: 149–159. doi:10.1023/A:1020507631848.

    Article  Google Scholar 

  • Mertz, O., Wadley, R. L., Nielsen, U., Bruun, T. B., Colfer, C. J. P., de Neergaard, A., Jepsen, M. R., Martinussen, T., Zhao, Q., Noweg, G. T., and Magid, J. (2008). A Fresh Look at Shifting Cultivation: Fallow Length an Uncertain Indicator of Productivity. Agricultural Systems 96: 75–84. doi:10.1016/j.agsy.2007.06.002.

    Article  Google Scholar 

  • Mokany, K., Raison, R. J., and Prokushkin, A. S. (2006). Critical Analysis of Root:Shoot Ratios in Terrestrial Biomes. Global Change Biology 12: 84–96. doi:10.1111/j.1365-2486.2005.001043.x.

    Article  Google Scholar 

  • Montagnini, F. (1-9-2000). Accumulation in Above-Ground Biomass and Soil Storage of Mineral Nutrients in Pure and Mixed Plantations in a Humid Tropical Lowland. Forest Ecology and Management 134: 257–270. doi:10.1016/S0378-1127(99)00262-5.

  • Montagnini, F., and Nair, P. K. R. (2004). Carbon Sequestration: An Underexploited Environmental Benefit of Agroforestry Systems. Agroforestry Systems 61: 281–295. doi:10.1023/B:AGFO.0000029005.92691.79.

    Article  Google Scholar 

  • Montagnini, F., and Porras, C. (1998). Evaluating the Role of Plantations as Carbon Sinks: An Example of an Integrative Approach from the Humid Tropics. Environmental Management 22: 459–470. doi:10.1007/s002679900119.

    Article  Google Scholar 

  • Murdiyarso, D., van Noordwijk, M., Wasrin, U. R., Tomich, T. P., and Gillison, A. N. (2002). Environmental Benefits and Sustainable Land-Use Options in the Jambi Transect, Sumatra. Journal of Vegetation Science 13: 429–438.

    Article  Google Scholar 

  • Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E., and Mcgilvray, H. (2002). Does Conversion of Forest to Agricultural Land Change Soil Carbon and Nitrogen? A Review of the Literature. Global Change Biology 8: 105–123. doi:10.1046/j.1354-1013.2001.00459.x.

    Article  Google Scholar 

  • Mutuo, P., Cadisch, G., Albrecht, A., Palm, C., and Verchot, L. (2005). Potential of Agroforestry for Carbon Sequestration and Mitigation of Greenhouse Gas Emissions from Soils in the Tropics. Nutrient Cycling in Agroecosystems 71: 43–54. doi:10.1007/s10705-004-5285-6.

    Article  Google Scholar 

  • Nielsen, U., Mertz, O., and Noweg, G. T. (2006). The Rationality of Shifting Cultivation Systems: Labor Productivity Revisited. Human Ecology 34: 210–218. doi:10.1007/s10745-006-9014-4.

    Article  Google Scholar 

  • Noble, A. D., Gillman, G. P., and Ruaysoongnern, S. (2000). A Cation Exchange Index for Assessing Degradation of Acid Soil by Further Acidification under Permanent Agriculture in the Tropics. European Journal of Soil Science 51: 233–243. doi:10.1046/j.1365-2389.2000.00313.x.

    Article  Google Scholar 

  • Noguchi, S., Kasran, S., Yosup, Z., Tsuboyama, Y., and Tani, M. (2003). Depth and Physical Properties of Soil in a Forest and a Rubber Plantation in Peninsular Malaysia. Journal of Tropical Forest Science 15: 513–530.

    Google Scholar 

  • Nye, P. H., and Greenland, D. J. (1964). Changes in the Soil after Clearing Tropical Forest. Plant and Soil 21: 101–112. doi:10.1007/BF01373877.

    Article  Google Scholar 

  • Padoch, C., Coffey, K., Mertz, O., Leisz, S., Fox, J., and Wadley, R. L. (2007). The Demise of Swidden in Southeast Asia? Local Realities and Regional Ambiguities. Geografisk Tidsskrift—Danish Journal of Geography 107: 29–41.

    Google Scholar 

  • Palm, C. A., Swift, M. J., and Woomer, P. L. (1996). Soil Biological Dynamics in Slash-and-Burn Agriculture. Agriculture, Ecosystems and Environment 58: 61–74. doi:10.1016/0167-8809(95)00653-2.

    Article  Google Scholar 

  • Palm, C. A., van Noordwijk, M., Woomer, P., Alegre, J. C., Arévalo, L., Castilla, C. E., Cordeiro, D. G., Hairiah, K., Kotto-Same, J., Moukam, A., Parton, W. J., Ricse, A., Rodrigues, V., and Sitompul, S. M. (2005). Carbon losses and sequestration after land use changes on the humid tropics. In Palm, C. A., Vosti, S. A., Sanchez, P. A., and Ericksen, P. J. (eds.), Slash-and-Burn Agriculture—The Search for Alternatives. Columbia University Press, New York, pp. 41–63.

    Google Scholar 

  • Paul, K. I., Polglase, P. J., Nyakuengama, J. G., and Khanna, P. K. (1-9-2002). Change in soil carbon following afforestation. Forest Ecology and Management 168: 241–257. doi:10.1016/S0378-1127(01)00740-X.

  • Petit, B., and Montagnini, F. (15-9-2006). Growth in Pure and Mixed Plantations of Tree Species Used in Reforesting Rural Areas of the Humid Region of Costa Rica, Central America. Forest Ecology and Management 233: 338–343. doi:10.1016/j.foreco.2006.05.030.

  • Powers, J. S., and Veldkamp, E. (2005). Regional Variation in Soil Carbon and Delta C13 Signature in Forests and Pastures of Northeastern Costa Rica. Biogeochemistry 72: 315–336. doi:10.1007/s10533-004-0368-7.

    Article  Google Scholar 

  • Ramakrishnan, P. S., and Toky, O. P. (1981). Soil Nutrient Status of Hill Agro-ecosystems and Recovery Pattern after Slash and Burn Agriculture (Jhum) in North-Eastern India. Plant and Soil 60: 41–64. doi:10.1007/BF02377111.

    Article  Google Scholar 

  • Rerkasem, K., Lawrence, D., Padoch, C., Schmidt-Vogt, D., Ziegler, A. D., and Bruun, T. B. (2009). Consequences of swidden transitions for crop and fallow biodiversity in Southeast Asia. Human Ecology, this issue.

  • Richards, A. E., Dalal, R. C., and Schmidt, S. (2007). Soil Carbon Turnover and Sequestration in Native Subtropical Tree Plantations. Soil Biology and Biochemistry 39: 2078–2090.

    Article  Google Scholar 

  • Roder, W., Phengchanh, S., and Keoboulapha, B. (1995). Relationships Between Soil, Fallow Period, Weeds and Rice Yield in Slash-and-Burn Systems of Laos. Plant and Soil 176: 27–36. doi:10.1007/BF00017672.

    Article  Google Scholar 

  • Roder, W., Phengchanh, S., and Maniphone, S. (1997). Dynamics of Soil and Vegetation During Crop and Fallow Period in Slash-and-Burn Fields of Northern Laos. Geoderma 76: 131–144. doi:10.1016/S0016-7061(96)00100-0.

    Article  Google Scholar 

  • Romanyá, J., Casals, P., and Vallejo, V. R. (2001). Short Term Effects of Fire on Soil Nitrogen Availability in Mediterranean Grasslands and Shrublands Growing in Old Fields. Forest Ecology and Management 147: 39–53. doi:10.1016/S0378-1127(00)00433-3.

    Article  Google Scholar 

  • Ruthenberg, H. (1980). Farming Systems in the Tropics. Clarendon, Oxford.

    Google Scholar 

  • Sá, J. C., Cerri, C. C., Dick, W. A., Lal, R., Venzke Filho, S. P., Piccolo, M. C., and Feigl, B. J. (2001). Organic Matter Dynamics and Carbon Sequestration for a Tillage Chronosequence in a Brazilian Oxisol. Soil Science Society of America Journal 65: 1486–1499.

    Article  Google Scholar 

  • Saa, A., Trasar-Cepeda, M. C., Gil-Sotres, F., and Carballas, T. (1993). Changes in Soil Phosphorus and Acid Phosphatase Activity Immediately Following Forest Fires. Soil Biology and Biochemistry 25: 1223–1230. doi:10.1016/0038-0717(93)90218-Z.

    Article  Google Scholar 

  • Sanchez, P. A. (1976). Properties and Management of Soils in the Tropics. Wiley, New York.

    Google Scholar 

  • Sanchez, P. A., Bandy, D. E., Villachica, J. H., and Nicholaides, J. J. (1982). Amazon Basin Soils: Management for Continuous Crop Production. Science 216: 821–827. doi:10.1126/science.216.4548.821.

    Article  Google Scholar 

  • Sarmiento, L., and Bottner, P. (2002). Carbon and Nitrogen Dynamics in Two Soils with Different Fallow Times in the High Tropical Andes: Indications for Fertility Restoration. Applied Soil Ecology 19: 79–89. doi:10.1016/S0929-1393(01)00178-0.

    Article  Google Scholar 

  • Schlesinger, W. H., and Andrews, J. A. (2000). Soil Respiration and the Global Carbon Cycle. Biogeochemistry 48: 7–20. doi:10.1023/A:1006247623877.

    Article  Google Scholar 

  • Schmidt-Vogt, D., Leisz, S., Mertz, O., Heinimann, A., Thiha, Messerli, P., Epprecht, M., Cu, P. V., Chi, K., Hardino, M., and Truong, D. (2009). An Assessment of Trends in the Extent of Swidden in Southeast Asia. Human Ecology, this issue.

  • Schroeder, P. (1992). Carbon Storage Potential of Short Rotation Tropical Tree Plantations. Forest Ecology and Management 50: 31–41. doi:10.1016/0378-1127(92)90312-W.

    Article  Google Scholar 

  • Schroth, G., D’Angelo, S. A., Teixeira, W. G., Haag, D., and Lieberei, R. (2002). Conversion of Secondary Forest into Agroforestry and Monoculture Plantations in Amazonia: Consequences for Biomass, Litter and Soil Carbon Stocks after 7 years. Forest Ecology and Management 163: 131–150. doi:10.1016/S0378-1127(01)00537-0.

    Article  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S. M., Moraes, J. C., and Albrecht, A. (2002). Soil Organic Matter, Biota and Aggregation in Temperate and Tropical Soils—Effects of No-Tillage. Agronomie 22: 755–775. doi:10.1051/agro:2002043.

    Article  Google Scholar 

  • Sommer, R., Denich, M., and Vlek, P. L. G. (2000). Carbon Storage and Root Penetration in Deep Soils Under Small-Farmer Land-Use Systems in the Eastern Amazon Region, Brazil. Plant and Soil 219: 231–241. doi:10.1023/A:1004772301158.

    Article  Google Scholar 

  • Swamy, P. S., and Ramakrishnan, P. S. (1988). Nutrient Budget under Slash and Burn Agriculture (Jhum) with Different Weeding Regimes in North-Eastern India. Acta Oecologica 9: 85–102.

    Google Scholar 

  • Szott, L. T., Palm, C. A., and Buresh, R. J. (1999). Ecosystem Fertility and Fallow Function in the Humid and Subhumid Tropics. Agroforestry Systems 47: 163–196. doi:10.1023/A:1006215430432.

    Article  Google Scholar 

  • Tanaka, S., Tachibe, S., Wasli, M. E. B., Lat, J., Seman, L., Kendawang, J. J., Iwasaki, K., and Sakurai, K. (2009). Soil Characteristics under Cash Crop Farming in Upland Areas of Sarawak, Malaysia. Agriculture, Ecosystems & Environment 129: 293–301. doi:10.1016/j.agee.2008.10.001.

    Article  Google Scholar 

  • Tinker, P. B., Ingram, J. S. I., and Struwe, S. (1996). Effects of Slash-and-Burn Agriculture and Deforestation on Climate Change. Agriculture, Ecosystems & Environment 58: 13–22. doi:10.1016/0167-8809(95)00651-6.

    Article  Google Scholar 

  • Uhl, C. (1987). Factors Controlling Succession Following Slash-and-Burn Agriculture in Amazonia. Journal of Ecology 75: 377–407. doi:10.2307/2260425.

    Article  Google Scholar 

  • Uhl, C., Jordan, C., Clark, K., Clark, H., and Herrera, R. (1982). Ecosystem Recovery in Amazon Caatinga Forest after Cutting, Cutting and Burning, and Bulldozer Clearing Treatments. Oikos 38: 313–320. doi:10.2307/3544671.

    Article  Google Scholar 

  • van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K., and Bernoux, M. (1997). Soil Carbon Dynamics in the Humid Tropical Forest Zone. Geoderma 79: 187–225. doi:10.1016/S0016-7061(97)00042-6.

    Article  Google Scholar 

  • Vogt, K., Asbjornsen, H., Ercelawn, A., Montagnini, F., and Valdes, M. (1997). Roots and mycorrhizas in plantation ecosystems. In Nambiar, E. K. S., and Brown, A. G. (eds.), Management of Soil. Water and Nutrients in Tropical Plantation Forests, ACIAR Monograph, Melbourne, pp. 247–289, No. 43.

  • Wauters, J. B., Coudert, S., Grallien, E., Jonard, M., and Ponette, Q. (2008). Carbon Stock in Rubber Tree Plantations in Western Ghana and Mato Grosso (Brazil). Forest Ecology and Management 255: 2347–2361. doi:10.1016/j.foreco.2007.12.038.

    Article  Google Scholar 

  • Whitmore, T. C. (1998). An Introduction to Tropical Rain Forests. Oxford University Press, Oxford.

    Google Scholar 

  • Yadav, R. L., Dwivedi, B. S., Prasad, K., Tomar, O. K., Shurpali, N. J., and Pandey, P. S. (2000). Yield Trends, and Changes in Soil Organic-C and Available NPK in a Long-Term Rice–Wheat System under Integrated Use of Manures and Fertilisers. Field Crops Research 68: 219–246. doi:10.1016/S0378-4290(00)00126-X.

    Article  Google Scholar 

  • Young, A. (1997). Agroforestry for Soil Management. CAB International and ICRAF, Oxon.

    Google Scholar 

  • Zhang, H., and Zhang, G. L. (2003). Microbial Biomass Carbon and Total Organic Carbon of Soils as Affected by Rubber Cultivation. Pedosphere 13: 353–357.

    Google Scholar 

  • Zhang, H., and Zhang, G. L. (2005). Landscape-Scale Soil Quality Change Under Different Farming Systems of a Tropical Farm in Hainan, China. Soil Use and Management 21: 58–64. doi:10.1079/SUM2005293.

    Article  Google Scholar 

  • Zhang, H., Zhang, G. L., Zhao, Y. G., Zhao, W. J., and Qi, Z. P. (2007). Chemical Degradation of a Ferralsol (Oxisol) Under Intensive Rubber (Hevea brasiliensis) Farming in Tropical China. Soil and Tillage Research 93: 109–116. doi:10.1016/j.still.2006.03.013.

    Article  Google Scholar 

  • Ziegler, A. D., Agus, F., Bruun, T. B., van Noordwijk, M., Lam, N. T., Lawrence, D., Rerkasem, K., and Padoch, C. (2009). Environmental consequences of the demise in swidden agriculture in Montane Mainland SE Asia: Hydrology and geomorphology. Human Ecology, this issue.

Download references

Acknowledgement

We would like to thank the Ford Foundation for funding a workshop in Hanoi in March 2008 where the data for this paper was discussed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilde Bech Bruun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruun, T.B., de Neergaard, A., Lawrence, D. et al. Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality. Hum Ecol 37, 375–388 (2009). https://doi.org/10.1007/s10745-009-9257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10745-009-9257-y

Keywords

Navigation