Skip to main content

Advertisement

Log in

Potential Effects of Elevated Sea-Water Temperature on Pelagic Food Webs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effect of temperature changes on the marine pelagic food web was studied in three successive mesocosm experiments, performed during the spring bloom 2001 in the northern Baltic Sea. The temperature was varied from 5 to 20 °C in each experiment, running over a 3-week period. The experiments included food webs of at least four trophic levels: (1) phytoplankton-bacteria, (2) flagellates, (3) ciliates and (4) metazooplankton. The results showed that heterotrophic to autotrophic biomass ratio (H/A) increased 5 times when temperature was raised from 5 to 10 °C. In agreement, the carbon fixation to respiration ratio indicated a decrease of six times over the same temperature range. Furthermore, the sedimentation decreased by 45% when the temperature was elevated from 5 to 10 °C, probably as a consequence of the increased respiration losses and bacterial biodegradation of settling material. Analyzed parameters, thus, indicated that the degree of heterotrophy increased in the temperature interval of 5–10 °C. Above 10 °C, the analyzed parameters in general were more stable. Our results indicate that moderately elevated seawater temperatures, due to climate change or weather alterations, may affect the entire ecosystem function in temperate sea areas by altering the balance between autotrophy and heterotrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Andersson P. Haecky Å. Hagström (1994) ArticleTitleEffect of temperature and light on the growth of micro-, nano- and pico-plankton: impact on algal succession Marine Biology 120 511–520

    Google Scholar 

  • R. Autio (1998) ArticleTitleResponse of seasonally cold-water bacterioplankton to temperature and substrate treatments Estuarine Coastal Shelf Science 46 465–474

    Google Scholar 

  • C. Bernes (1988) Sweden’s Marine Environment-Ecosystems under Pressure Swedish Environmental Protection Agency. Monitor 1988 Solna, Sweden

    Google Scholar 

  • Blackburn N. Å. Hagström J. Wikner R. C. Hansson P. K. Bjørnsen (1998) ArticleTitleRapid determination of bacterial abundance, biovolume, morphology and growth by neural network based image analysis Applied Environmental Microbiology 64 3246–3255

    Google Scholar 

  • H. H. Bottrell A. Duncan Z. M. Gliwicz E. Grygierek A. Herzig A. H. Ilkowska H. Kurasawa P. Larsson T. Weglenska (1976) ArticleTitleA review of some problems in zooplankton production studies Norwegian Journal of Zoology 24 419–456

    Google Scholar 

  • P. A. del Giorgio J. J. Cole A. Cimbleris (1997) ArticleTitleRespiration rates of bacteria exceed phytoplankton production in unproductive aquatic systems Nature 385 148–151 Occurrence Handle1:CAS:528:DyaK2sXksF2rtA%3D%3D

    CAS  Google Scholar 

  • P. A. del Giorgio C. M. Duarte (2002) ArticleTitleRespiration in the open ocean Nature 420 379–384 Occurrence Handle1:CAS:528:DC%2BD38XptFCisrg%3D Occurrence Handle12459775

    CAS  PubMed  Google Scholar 

  • J. W. Dippner G. Kornilovs L. Sidrevics (2000) ArticleTitleLong-term variability of mesozooplankton in the Central Baltic Sea Journal of Marine Systems 25 23–31

    Google Scholar 

  • C. M. Duarte S. Agusti (1998) ArticleTitleThe CO2 balance of unproductive aquatic ecosystems Science 281 234–236 Occurrence Handle1:CAS:528:DyaK1cXksFKitLo%3D Occurrence Handle9657712

    CAS  PubMed  Google Scholar 

  • Eriksson Wiklund, A-K., 2002. Natural and pollution induced factors affecting the reproduction in amphipods [Dissertation]. Stockholm: Stockholm University

  • J. A. Fuhrman F. Azam (1982) ArticleTitleThymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results Marine Biology 66 109–120

    Google Scholar 

  • E. Gargas (1975) A Manual for Phytoplankton Production Studies in the Baltic Baltic Marine Biologists. Publication No. 2. Water Quality Institute Horsholm, Denmark

    Google Scholar 

  • J. M. Gasol C. Pedrós-Alió D. Vaqué (2002) ArticleTitleRegulation of bacterial assemblages in oligotrophic plankton systems: results from experimental and empirical approaches Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 81 435–452 Occurrence Handle1:CAS:528:DC%2BD38Xns1Sgt70%3D

    CAS  Google Scholar 

  • J. F. Gillooly (2000) ArticleTitleEffect of body size and temperature on generation time in zooplankton Journal of Plankton Research 22 241–251

    Google Scholar 

  • K. Grasshoff M. Ehrhardt K. Kremling (1983) Methods of Sea Water Analysis Verlag Chemie Weinheim

    Google Scholar 

  • A. S. Heiskanen J. M. Leppänen (1995) ArticleTitleEstimation of export production in the coastal Baltic Sea: Effect of resuspension and microbial decomposition on sedimentation measurements Hydrobiologia 316 211–224 Occurrence Handle1:CAS:528:DyaK28Xhs1ejsbo%3D

    CAS  Google Scholar 

  • Hernroth, L., 1985. Recommendations on methods for the marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. The Baltic Marine Biologists. Publ No 10. Lysekil, Sweden. ISSN:0282–8839

  • J. E. Hobbie R. J. Daley S. Jasper (1977) ArticleTitleUse of Nucleopore filters for counting bacteria by epiflouresence microscopy Applied Environmental Microbiology 33 1225–1228 Occurrence Handle1:STN:280:CSiB38%2FjvVE%3D

    CAS  Google Scholar 

  • H. G. Hoppe K. Gocke R. Koppe C. Begler (2002) ArticleTitleBacterial growth and primary production along a north – south transect of the Atlantic Ocean Nature 416 168–171 Occurrence Handle1:CAS:528:DC%2BD38XisFShtbs%3D Occurrence Handle11894092

    CAS  PubMed  Google Scholar 

  • H. Höglander U. Larsson S. Hajdu (2004) ArticleTitleVertical distribution and settling of spring phytoplankton in the offshore NW Baltic Sea proper Marine Ecology Progress Series 283 15–17

    Google Scholar 

  • M. E. Huntley M. D. G. Lopez (1992) ArticleTitleTemperature-dependent production of marine copepods – a global synthesis American Naturalist 140 201–242

    Google Scholar 

  • InstitutionalAuthorNameIPCC (2000) Emission Scenarios. Special Report of the Intergovernmental Panel on Climate Change (IPCC) Nebojsa Nakicenovic and Rob Swart, Cambridge University Press UK pp 570

    Google Scholar 

  • A. A. Keller C. A. Oviatt H. A. Walker J. D. Hawk (1999) ArticleTitlePredicted impacts of elevated temperature on the magnitude of the winter-spring phytoplankton bloom in temperate coastal waters: A mesocosm study Limnology and Oceanography 44 344–356

    Google Scholar 

  • C. Möllmann F. W. Köster (2002) ArticleTitlePopulation dynamics of calanoid copepods and the implications of their predation by clupeid fish in the central Baltic Sea Journal of Plankton Research 24 959–977

    Google Scholar 

  • S. Norland (1993) The relationship between biomass and volume of bacteria P. H., Kemp B. F. Sherr E. B. Sherr J. J. Cole (Eds) Handbook of Methods in Aquatic Microbial Ecology. Chapter 35. Lewis Publishers London 303–307

    Google Scholar 

  • K. Olli C. W. Riser P. Wassmann T. Ratkova E. Arashkevich A. Pasternak (2002) ArticleTitleSeasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea Journal of Marine Systems 38 189–204

    Google Scholar 

  • S. J. Painting M. I. Lucas D. G. Muir (1989) ArticleTitleFluctuations in heterotrophic bacterial community structure, activity and production in response to development and decay of phytoplankton in a microcosm Marine Ecology Progress Series 53 129–141 Occurrence Handle1:CAS:528:DyaL1MXkvFersLg%3D

    CAS  Google Scholar 

  • C. Panagiotopoulos R. Sempéré I. Obernosterer L. Striby M. Goutx V. Wambeke S. Gautier R. Lafont (2002) ArticleTitleBacterial degradation of large particles in the southern Indian Ocean using in vitro incubation experiments Organic Geochemistry 33 985–1000 Occurrence Handle1:CAS:528:DC%2BD38XlvVelt7s%3D

    CAS  Google Scholar 

  • F. Peters (1994) ArticleTitlePredictions of planktonic protistan grazing rates Limnology and Oceanography 39 195–206

    Google Scholar 

  • R. H. Peters J. A. Downing (1984) ArticleTitleEmpirical analysis of zooplankton filtering and feeding rates Limnology and Oceanography 29 763–784

    Google Scholar 

  • J. Pinhassi Å. Hagström (2000) ArticleTitleSeasonal succession in marine bacterioplankton Aquatic Microbial Ecology 21 245–256

    Google Scholar 

  • L. R. Pomeroy W. J. Wiebe D. Diebel R. J. Thompson G. T. Rowe J. D. Pakulski (1991) ArticleTitleBacterial responses to temperature and substrate concentration during the Newfoundland spring bloom Marine Ecology Progress Series 75 143–159

    Google Scholar 

  • L. R. Pomeroy W. J. Wiebe (2001) ArticleTitleTemperature and substrates as interactive limiting factors for marine heterotrophic bacteria Aquatic Microbial Ecology 23 187–204

    Google Scholar 

  • P. D. Quay B. Tilbrook C. S. Wong (1992) ArticleTitleOceanic uptake of fossil fuel CO2: Carbon-13 evidence Science 256 74–79 Occurrence Handle1:CAS:528:DyaK38Xit1SmtLo%3D

    CAS  Google Scholar 

  • R. B. Rivkin L. Legendre (2001) ArticleTitleBiogenic carbon cycling in the upper ocean: effects of microbial respiration Science 291 2398–2400 Occurrence Handle1:CAS:528:DC%2BD3MXit1Knu7Y%3D Occurrence Handle11264533

    CAS  PubMed  Google Scholar 

  • K. Samuelsson A. Andersson (2003) ArticleTitlePredation limitation in the pelagic microbial food web in an oligotrophic aquatic system Aquatic Microbial Ecology 30 239–250

    Google Scholar 

  • J. Sandberg A. Andersson S. Johansson J. Wikner (2004) ArticleTitlePelagic food web structure and carbon budget in the northern Baltic Sea, potential importance of terrigenous carbon Marine Ecology Progress Series 268 13–29

    Google Scholar 

  • R. W. Sanders D. A. Caron U. G. Berninger (1992) ArticleTitleRelationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison Marine Ecology Progress Series 86 1–14

    Google Scholar 

  • T. J. Smayda (1970) ArticleTitleThe suspension and sinking of phytoplankton in the sea Oceanography and Marine Biology. An Annual Review 8 357–414

    Google Scholar 

  • M. Šolić N. Krstulović N. Bojanić I. Marasović Ž. Ninčević (1998) ArticleTitleSeasonal switching between relative importance of bottom-up and top-down control of bacterial and heterotrophic nanoflagellate abundance Journal of Molecular Biology 78 755–766

    Google Scholar 

  • D. Straile (1997) ArticleTitleGross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group Limnology and Oceanography 42 1375–1385

    Google Scholar 

  • R. R. Strathmann (1967) ArticleTitleEstimating the organic content of phytoplankton for cell volume and plasma volume Limnology and Oceanography 12 411–418 Occurrence Handle1:CAS:528:DyaF1cXhvF2nsw%3D%3D

    CAS  Google Scholar 

  • H. Utermöhl (1958) ArticleTitleZur Vervollkommung der quantitativen phytoplankton-methodik Mitteilungen. Internationale Vereiningung für Theoretische und Angewandte Limnologie 9 38

    Google Scholar 

  • P. G. Verity C. Y. Robertson C. R. Tronzo M. G. Andrews J. R. Nelson M. E. Sieracki (1992) ArticleTitleRelationships between cell-volume and the carbon and nitrogen-content of marine photosynthetic nanoplankton Limnology and Oceanography 37 1434–1446 Occurrence Handle1:CAS:528:DyaK3sXktVCmtrs%3D

    CAS  Google Scholar 

  • J. Wikner Å. Hagström (1999) ArticleTitleBacterioplankton intra-annual variability: Importance of hydrography and competition Aquatic Microbial Ecology 20 245–260

    Google Scholar 

  • U. L. Zweifel (1993) ArticleTitleConsumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients Marine Ecology Progress Series 101 23–32 Occurrence Handle1:CAS:528:DyaK2cXktVCksLc%3D

    CAS  Google Scholar 

  • U. L. Zweifel (1999) ArticleTitleFactors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga Estuarine, Coastal and Shelf Science 48 357–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Müren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müren, U., Berglund, J., Samuelsson, K. et al. Potential Effects of Elevated Sea-Water Temperature on Pelagic Food Webs. Hydrobiologia 545, 153–166 (2005). https://doi.org/10.1007/s10750-005-2742-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-005-2742-4

Keywords

Navigation