Skip to main content
Log in

Effects of ultraviolet radiation on productivity and nitrogen fixation in the Cyanobacterium, Anabaena sp. (Newton’s strain)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2007

Abstract

The biological effects of ultraviolet radiation (UVR; 290–400 nm), especially the UV-B (320–400 nm) component of the spectrum, include both direct and indirect effects on many cellular processes. In cyanobacteria both photosynthesis and nitrogen fixation can be affected directly by UVR, and indirectly by UVR through the production of reactive oxygen species (ROS). For the heterocystous cyanobacterium, Anabaena sp. (Newton’s strain), exposure to UVR causes a significant decline in the quantum yields of photosystem II (PSII) fluorescence and maximum productivity despite an increase in UVR absorbing compounds, mycosporine-like amino acids (MAAs), in those cells exposed to UVR. Concurrent with these observations are significant increases in the activities of superoxide dismutase indicative of an increase in the level of oxidative stress in cells exposed to UVR. Additionally, measurements of nitrogenase activity (acetylene reduction) show a significant decrease in cyanobacteria exposed to UVR, which manifests itself as a decrease in cellular nitrogen and an increase in C:N ratios. These results show that these nitrogen-fixing cyanobacteria are particularly sensitive to UVR, both its direct and indirect effects. The effects of UVR reported here add to the increasing evidence that UVR effects on this important group of prokaryotes could affect the input of new nitrogen, and the biogeochemical cycling of this essential macronutrient in terrestrial, marine, and freshwater habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asada, K. & M. Takahashi, 1987. Production and scavenging of active oxygen in photosynthesis. In: Kyle D. J., C. B. Osmond & C.J. Arntzen (eds), Photoinhibition. Elsevier, Amsterdam: 228–287.

    Google Scholar 

  • Blumthaler, M. & W. Ambach, 1990. Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science 248: 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard, J. N., S. Roy & D. A. Campbell, 2006. UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities. Photochemistry and Photobiology 82: 936–951.

    Article  PubMed  CAS  Google Scholar 

  • Büchell, C. & C. Wilhelm, 1993. In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: Progress, problems, and perspectives. Photochemistry and Photobiology 58: 137–148.

    Google Scholar 

  • Callieri, C., G. Morabito, Y. Huot, P. J. Neale & E. Litchman, 2001. Photosynthetic response of pico-and nanoplanktonic algae to UVB, UVA, and PAR in a high mountain lake. Aquatic Sciences 63: 286–293.

    Article  Google Scholar 

  • Díaz, S. B., J. H. Morrow & C. R. Booth, 2000. UV physics and optics. In: de Mora, S., S. Demers & M. Vernet (eds), The Effects of UV Radiation in the Marine Environment. Cambridge University Press, New York: 35–71.

    Google Scholar 

  • Donker, V. A., D. H. A. K. Amewowor & D.-P. Häder, 1993. Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiology 12: 143–148.

    Article  Google Scholar 

  • Dubinsky, Z., P. G. Falkowski & K. Wyman, 1986. Light harvesting and utilization by phytoplankton. Plant and Cell Physiology 27: 1335–1349.

    CAS  Google Scholar 

  • Ehling-Schulz, M. & S. Scherer, 1999. UV protection in cyanobacteria. European Journal of Phycology 34: 329–338.

    Article  Google Scholar 

  • Elstner, E. F. & A. Heupel, 1976. Inhibition of nitrite formation from hydroxylammonium-chloride: A simple assay for superoxide dismutase. Analytical Biochemistry 70: 616–620.

    Article  PubMed  CAS  Google Scholar 

  • Falcón, L. I., E. Escobar-Briones & D. Romero, 2002. Nitrogen fixation patterns displayed by cyanobacterial consortia in Alchichica crater-lake, Mexico. Hydrobiologia 467: 71–78.

    Article  Google Scholar 

  • Fay, P., 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Micobiological Reviews 56: 340–373.

    CAS  Google Scholar 

  • Fridovich, I., 1986. Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics 247: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F. & R. W. Castenholz, 1993a. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology 59: 163–169.

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F., C. E. Wingard & R. W. Castenholz, 1993b. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Applied and Environmental Microbiology 59: 170–176.

    PubMed  CAS  Google Scholar 

  • Greenberg, B. M., V. Gaba, O. Canaani, S. Malkin, A. K. Mattoo & M. Edelman, 1989. Separate photosensitizers mediate degradation of the 32 kDa photosystem II reaction center protein in the visible and UV spectral regions. Proceedings of the National Academy of Sciences 86: 6617–6620.

    Article  CAS  Google Scholar 

  • Halliwell, B. & J. M. C. Gutteridge, 1999. Free Radicals in Biology and Medicine. Oxford University Press Inc., New York.

    Google Scholar 

  • Han, T., R. P. Sinha & D.-P. Häder, 2003. Effects of intense PAR and UV radiation on photosynthesis, growth and pigmentation in the rice-field cyanobacterium Anabaena sp. Photochemical and Photobiology Sciences 2: 649–654.

    Article  CAS  Google Scholar 

  • Hardy, R. W. F., R. D. Holsten, E. K. Jackson & R. C. Burns, 1968. The acetylene-ethylene assay for nitrogen fixation: Laboratory and field evaluation. Plant Physiology 43: 1185–1207.

    Article  PubMed  CAS  Google Scholar 

  • Hazzard C., M. P. Lesser & R. A. Kinzie III, 1997. Effects of ultraviolet radiation on photosynthesis in the subtropical marine diatom, Chaetoceros gracilis (Baccilariophyceae). Journal of Phycology 33: 960–968.

    Article  Google Scholar 

  • He, Y-Y. & D.-P. Häder, 2002a. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: Protective effects of ascorbic acid and N-acetyl-L-cysteine. Journal of Photochemistry and Photobiology B: Biology 66: 115–124.

    Article  CAS  Google Scholar 

  • He, Y.-Y. & D.-P. Häder, 2002b. Reactive oxygen species and UV-B: Effect on cyanobacteria. Photochemistry and Photobiology Society 1: 729–736.

    Article  CAS  Google Scholar 

  • He, Y.-Y., M. Kilisch & D.-P. Häder, 2002. Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochemistry and Photobiology 76: 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Herndl, G. J., G. Müller-Niklas & J. Frick, 1993. Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature 361: 717–719.

    Article  Google Scholar 

  • Hirosawa, T. & M. Miyachi, 1983a. Effects of long-wavelength ultraviolet (UV-A) radiation on the growth of Anacystis nidulans. Plant Science Letters 28: 291–298.

    CAS  Google Scholar 

  • Hirosawa, T. & M. Miyachi, 1983b. Inactivation of Hill reaction by long-wavelength radiation (UV-A) and its photoreactivation by visible light in the cyanobacterium, Anacystis nidulans. Archives of Microbiology 135: 98–102.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c, and c 2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Kerr, R. A. & C. T. McElroy, 1993. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262: 1032–1034.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., M. D. Tyagi, P. N. Jha, G. Srinivas & A. Singh, 2003. Inactivation of cyanobacterial nitrogenase after exposure to ultraviolet-B radiation. Current Microbiology 46: 380–384.

    Article  PubMed  CAS  Google Scholar 

  • Lesser, M. P. & W. Stochaj, 1990. Photoadaptation and protection against active forms of oxygen in the symbiotic procaryote Prochloron sp. and its ascidian host. Applied and Environmental Microbiology 56: 1530–1535.

    PubMed  CAS  Google Scholar 

  • Lesser, M. P., 1996. Responses of phytoplankton acclimated to UV-B radiation: ultraviolet radiation absorbing compounds do not provide complete protection in the dinoflagellate, Prorocentrum micans. Marine Ecology Progress Series 132: 287–297.

    Article  CAS  Google Scholar 

  • Lesser, M. P., P. J. Neale & J. J. Cullen, 1996. Acclimation of Antarctic phytoplankton to ultraviolet radiation: Ultraviolet-absorbing compounds and carbon fixation. Molecular Marine Biology and Technology 5: 314–325.

    CAS  Google Scholar 

  • Lesser, M. P., 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Reviews of Physiology 68: 253–278.

    Article  CAS  Google Scholar 

  • Lewis, M. R. & J. C. Smith, 1983. A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Marine Ecology Progress Series 13: 99–102.

    Article  CAS  Google Scholar 

  • MacDonald, T. M., L. Dubois, L. C. Smith & D. A. Campbell, 2003. Sensitivity of cyanobacterial antenna, reaction center and CO2 assimilation transcripts and proteins to moderate UVB: Light acclimation potentiates resistance to UVB. Photochemistry and Photobiology 77: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Madronich S., R. L. McKenzie, M. M. Caldwell & L. O. Bjorn, 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24: 143–152.

    Google Scholar 

  • Neale, P. J., A. T. Banaszak & C. R. Jarriel, 1998. Ultraviolet suncreens in Gymnodinium sanguineum (Dinophyceae): Mycosporine-like amino acids protect against inhibition of photosynthesis. Journal of Phycology 34: 928–938.

    Article  CAS  Google Scholar 

  • Newton, J. W. & A. I. Herman, 1979a. Isolation of cyanobacteria from the aquatic fern Azolla. Archives of Microbiology 120: 161–165.

    Article  Google Scholar 

  • Newton, J. W., D. D. Tyler & M. E. Slodki, 1979b. Effects of ultraviolet-B (290–320 nm) radiation on blue-green alagae (Cyanobacteria), possible biological indicators of stratospheric ozone depletion. Applied and Environmental Microbiology 37: 1137–1141.

    PubMed  CAS  Google Scholar 

  • Oyanagui, Y., 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Analytical Biochemistry 142: 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. W., 1990. Physiological ecology and regulation of N2 fixation in natural waters. In: Marshall K. C. (ed.), Advances in Microbial Ecology, Plenum Press, New York: 305–343.

    Google Scholar 

  • Pienkos, P. T., S. Bodmer & F. R. Tabita, 1983. Oxygen inactivation and recovery of nitrogenase activity in cyanobacteria. Journal of Bacteriology 153: 182–190.

    PubMed  CAS  Google Scholar 

  • Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

    Google Scholar 

  • Richter, M., W. Rühle & A. Wild, 1990a. Studies on the mechanism of photosystem II photoinhibition I. A two-step degradation of D1 protein. Photosynthesis Research 24: 229–235.

    Article  CAS  Google Scholar 

  • Richter, M., W. Rühle & A. Wild, 1990b. Studies on the mechanism of photosystem II photoinhibition I. The involvement of toxic oxygen species. Photosynthesis Research 24: 237–243.

    Article  CAS  Google Scholar 

  • Shick, J. M. & W. C. Dunlap, 2002. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annual Review of Physiology 64: 223–262.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, R. P., M. Klisch, A. Gröniger & D.-P. Häder, 2001a. Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecology 154: 221–236.

    Article  Google Scholar 

  • Sinha, R. P., M. Klisch, E. W. Helbling & D.-P. Häder, 2001b. Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. Journal of Photochemistry and Photobiology B: Biology 60: 129–135.

    Article  CAS  Google Scholar 

  • Smith, R. L., C. Van Baalen & F. R. Tabita, 1987. Alteration of the Fe protein of nitrogenase by oxygen in the cyanobacterium Anabaena sp. strain CA. Journal of Bacteriology 169: 2537–2542.

    PubMed  CAS  Google Scholar 

  • Stolarski, R. R. Bojkov, L. Bishop, C. Zerefos, J. Staehelin & J. Zawodony, 1992. Measured trends in stratospheric ozone. Science 256: 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Tedetti, M. & R. Sempéré, 2006. Penetration of ultraviolet radiation in the marine environment. A review. Photochemistry and Photobiology 82: 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, W. F. & S. Roy, 1993. Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environmental Research 1: 1–12.

    CAS  Google Scholar 

  • Vincent, W. F. & A. Quesada, 1994. Ultraviolet radiation effects on cyanobacteria: Implications for Antarctic microbial ecosystems. In: Weiler C. S. & P. A. Penhale (eds), Ultraviolet Radiation and Biological Research in Antarctica. American Geophysical Union, Washington, D.C.: 111–124.

    Google Scholar 

  • Vincent W. F. & P. J. Neale, 2000. Mechanisms of damage to aquatic organisms. In: de Mora S, S. Demers & M. Vernet (eds), The Effects of UV Radiation in the Marine Environment. Cambridge University Press: 149–176.

Download references

Acknowledgements

This study was supported by research funding from the University of New Hampshire Hubbard Marine Program Endowment. I wish to thank Dr. Kazuo Yabe for authentic primary MAA standards, and Dr. Patrick Neale for providing the biological weighting function for UVR effects on picocyanobacterial photosynthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Lesser.

Additional information

Handling editor: L. Naselli-Flores

An erratum to this article can be found at http://dx.doi.org/10.1007/s10750-007-9170-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesser, M.P. Effects of ultraviolet radiation on productivity and nitrogen fixation in the Cyanobacterium, Anabaena sp. (Newton’s strain). Hydrobiologia 598, 1–9 (2008). https://doi.org/10.1007/s10750-007-9126-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9126-x

Keywords

Navigation