Skip to main content
Log in

Distribution of swordfish in the eastern Mediterranean, in relation to environmental factors and the species biology

  • FISH HABITAT MAPPING
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Swordfish catch per unit effort (CPUE) data from the Greek commercial fisheries operating in the eastern Mediterranean have been modeled on a seasonal basis as functions of environmental spatial, and temporal variables, including Sea Surface Temperature (SST), Chlorophyll-a (Chl-a), Mean Sea Level Anomaly (MSLA), Latitude, Longitude and Year. All variables were highly significant but most of the CPUE variation was explained by the spatial factors. Model predictions were used to generate swordfish density distributions maps, which revealed that swordfish migrates toward the eastern Levantine for spawning and suggested the existence of a major spawning ground in a region between the islands of Cyprus and Rhodes surrounded by persistent eddies and the Rhodes gyre. During periods other than the time of spawning migration, swordfish distribution is much broader with relatively higher concentrations occurring in areas with important prey potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anonymous, 2003. Mediterranean Swordfish. In International Commission for the Conservation of Atlantic Tunas (ICCAT), Report of the Standing Committee on Research and Statistics (SCRS) for biennial period 2002–03, Part I (2002), Vol. 2: 125–129, Madrid, Spain.

  • Anonymous, 2006. Mediterranean Swordfish. International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the Standing Committee on Research and Statistics (SCRS) for biennial period 2004–2005, Part II-3: 33–45.

  • Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina 70: 105–122.

    Article  Google Scholar 

  • Bigelow, K. A., C. H. Boggs & X. He, 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fisheries Oceanography 8: 178–198.

    Article  Google Scholar 

  • Carey, F. G. & B. H. Robison, 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. Fishery Bulletin U.S. 79: 277–292.

    Google Scholar 

  • Cavallaro, G., A. Potoschi & A. Cefali, 1991. Fertility gonad-somatic index and catches of eggs and larvae of Xiphias gladius L. 1758 in the southern Tyrrhenian Sea. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 35: 502–507.

  • Cleveland, W. S. & S. J. Devlin, 1988. Locally-weighted regression: an approach to regression analysis by local fitting. Journal of American Statistical Association 83: 596–610.

    Article  Google Scholar 

  • Damalas, D., P. Megalofonou & M. Apostolopoulou, 2007. Environmental, spatial, temporal and operational effects on swordfish (Xiphias gladius) catch rates of eastern Mediterranean Sea longline fisheries. Fisheries Research 84: 233–246.

    Article  Google Scholar 

  • Daskalov, G., 1999. Relating fish recruitment to stock biomass and physical environment in the Black Sea using generalised additive models. Fisheries Research 41: 1–23.

    Article  Google Scholar 

  • De La Serna, J. M., J. M. Ortiz de Urbina & D. Macias, 1996. Observations on sex-ratio, maturity and fecundity by length-class for swordfish (Xiphias gladius) captured with surface longline in the western Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 45: 117–122.

  • Doherty, P. J., 1987. Light-traps: selective but useful devices for quantifying the distributions and a abundance of larval fishes. Bulletin of Marine Science 41: 423–431.

    Google Scholar 

  • Ehrhardt, N. M., 1992. Age and growth of swordfish, Xiphias gladius, in the northwestern Atlantic. Bulletin of Marine Science 50: 292–301.

    Google Scholar 

  • Golden Software, 2002. SURFER, Version 8. Golden Software Inc., Golden, Colorado.

  • Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London: 335.

  • Kotoulas, G., A. Magoulas, N. Tsimenides & E. Zouros, 1995. Marked mitochondrial DNA differences between Mediterranean and Atlantic populations of the swordfish, Xiphias gladius. Molecular Ecology 4: 473–481.

    Article  CAS  Google Scholar 

  • Kotoulas, G., J. Mejuto, G. Tserpes, B. Garcia-Cortes, P. Peristeraki, J. M. De la Serna & A. Magoulas, 2003. DNA microsatellite markers in service of swordfish stock structure analysis in the Atlantic and Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 55: 1632–1639.

    Google Scholar 

  • Maravelias C. D., & C. Papaconstantinou, 2003. Size-related habitat use, aggregation patterns and abundance of anglerfish (Lophius budegassa) in the Mediterranean Sea determined by generalized additive modeling. Journal Marine Biological Association U.K. 83: 1171–1178.

    Article  Google Scholar 

  • Mejuto, J., J. M. De la Serna & B. Garcia, 1995. An overview of the sex-ratio at size of the swordfish (Xiphias gladius L.) around the world: similarity between different strata. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 44: 197–205.

    Google Scholar 

  • Mejuto, J., J. M. De la Serna & B. Garcia, 1998. Some considerations on the spatial and temporal variability in the sex-ratio at size of the swordfish (Xiphias gladius L.). International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 48: 205–215.

    Google Scholar 

  • Orsi-Relini, L., F. Garibaldi, C. Cima & G. Palandri, 1995. Feeding of the swordfish, the bluefin tuna and other pelagic nekton in the western Ligurian Sea. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 44: 283–286.

    Google Scholar 

  • Ozsoy, E., A. Hecht, U. Unluata, S. Brenner, H. I. Sur, J. Bishop, M. A. Latif & T. O. Rozentraub, 1993. A synthesis of the Levantine Basin circulation and hydrography, 1985–1990. Deep-Sea Research II 40: 1075–1119.

    Article  Google Scholar 

  • Palko, R. J., G. L. Beardsley, & W. J. Richards, 1981. Synopsis of the biology of the swordfish Xiphias gladius L. National Oceanic and Atmospheric Administration. Technical Report National Marine Fisheries Service, Circular: 441.

  • Peristeraki, P., G. Lazarakis, K. Skarvelis, N. Kypraios & G. Tserpes, 2007. Temporal growth differences of swordfish recruits in the eastern Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 60: 2063–2068.

    Google Scholar 

  • Rey, J. C., 1988. Comentarios sobre las areas de reproduccion del pez espada (Xiphias gladius) en el Atlantico y Mediterraneo. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 27: 180–192.

    Google Scholar 

  • Sibson, R., 1981. A brief description of natural neighbor interpolation. In Barnett, V. (ed.), Interpreting Multivariate Data. John Wiley & Sons, New York: 21–36.

  • Stergiou, K. I., G. Tserpes & P. Peristeraki, 2003. Modelling and forecasting monthly swordfish catches in the Eastern Mediterranean. Sciencia Marina 67: 283–290.

    Google Scholar 

  • Tserpes, G., C. Darby, A. Di Natale, P. Peristeraki & A. Mangano, 2003a. Assessment of the Mediterranean swordfish stock based on Greek and Italian fisheries data. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 55: 94–106.

    Google Scholar 

  • Tserpes, G., D. K. Moutopoulos, P. Peristeraki, G. Katselis & C. Koutsikopoulos, 2006. Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches. Fisheries Research 78: 196–202.

    Article  Google Scholar 

  • Tserpes, G. & P. Peristeraki, 2004. Catchability differences among the longlines used in the Greek swordfish fishery. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 56: 860–863.

    Google Scholar 

  • Tserpes, G. & P. Peristeraki, 2007. Effects of a seasonal closure of the Mediterranean swordfish fisheries on the stock production levels. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 60: 2059–2062.

    Google Scholar 

  • Tserpes, G., P. Peristeraki & A. Di Natale, 2001a. Size distribution of swordfish landings in the central and eastern Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 52: 733–739.

    Google Scholar 

  • Tserpes, G., P. Peristeraki & A. Di Natale, 2003b. Swordfish abundance trends in the Mediterranean. In Mediterranean Biological Time Series, Commission Internationale pour l’Exploration Scientifique de la mer Mediterranee (CIESM) Workshop Monographs 22: 101–108.

  • Tserpes, G., P. Peristeraki & S. Somarakis, 2001b. On the reproduction of swordfish (Xiphias gladius L.) in the Eastern Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 52: 740–744.

    Google Scholar 

  • Tserpes, G. & N. Tsimenides, 1995. Determination of age, growth of swordfish, Xiphias gladius L., 1758, in the eastern Mediterranean using anal-fin spines. Fishery Bulletin 93: 594–602.

    Google Scholar 

  • Venables, W. N. & B. D Ripley, 1997. Modern Applied Statistics with S-PLUS, Second Edition. Springer.

  • Walsh, A., & P. Kleiber, 2001. Generalized additive model and regression tree analyses of blue shark (Prionace glauca) catch rates by the Hawaii-based commercial longline fishery. Fisheries Research 53: 115–131.

    Article  Google Scholar 

  • Zervakis, V., A. Theocharis & D. Georgopoulos, 2005. Circulation and hydrography of the open seas. In: Papathanassiou, E. & A. Zenetos (eds), State of the Hellenic Marine Environment. Hellenic Center for Marine Research Publication: 104–111.

Download references

Acknowledgments

We wish to thank Drs. John Neilson (St. Andrews Biological Station, Canada) and Jaime Mejuto (IEO, Spain) for providing helpful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tserpes.

Additional information

Guest editor: V. D. Valavanis

Essential Fish Habitat Mapping in the Mediterranean

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tserpes, G., Peristeraki, P. & Valavanis, V.D. Distribution of swordfish in the eastern Mediterranean, in relation to environmental factors and the species biology. Hydrobiologia 612, 241–250 (2008). https://doi.org/10.1007/s10750-008-9499-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9499-5

Keywords

Navigation