Skip to main content

Advertisement

Log in

An approach to analyzing taxonomic patterns of protozoan communities for monitoring water quality in Songhua River, northeast China

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Taxonomic patterns of protozoan community structure for monitoring water quality were studied from May to September 2003 in Songhua River, northeast China. Protozoan communities were sampled monthly using PFU (polyurethane foam unit) method at the four stations with different pollution/eutrophication levels. Physical–chemical parameters (e.g., water temperature, dissolved oxygen (DO), pH, biological oxygen demand (BOD5), chemical oxygen demand (COD), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N) were measured synchronously for comparison with biotic parameters. A total of 53 protozoan taxa with nine common species were identified comprising 33 ciliates, 17 flagellates, 3 sarcodines. Multivariate analyses demonstrated that the spatial taxonomic patterns of protozoan communities significantly correlated with environmental conditions, especially related to the concentrations of COD, BOD5, NO3-N, and NH4-N, either alone or in combination with one another. Although species richness was found to be independent of physical–chemical parameters, the average taxonomic distinctness (Δ+) were positively significantly correlated with the concentration of dissolved oxygen and NO3-N, but negatively with COD and BOD5. It is suggested that spatial pattern of protozoan communities and taxonomic biodiversity can be used in assessing water quality of flowing river systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA (American Public Health Association), 1989. Standard methods for examinations of water and wastewater, 17th ed. APHA, Washington DC.

    Google Scholar 

  • Bick, H., 1972. Ciliated Protozoa: An Illustrated Guide to the Species Used as Biological Indicators in Freshwater Biology. World Health Organization, Geneva: 198.

    Google Scholar 

  • Cairns, J. Jr., M. L. Dahlberg, K. L. Dickson, N. Smith & W. T. Waller, 1969. The relationship of freshwater protozoan communities to the MacArthur–Wilson equilibrium model. American Naturalist 103: 439–454.

    Article  Google Scholar 

  • Cairns, J. Jr., G. R. Lanza & B. C. Parker, 1972. Pollution related to structural and functional changes in aquatic communities with emphasis on freshwater algal and protozoa. Proceedings of the Academic Natural Sciences, Philadelphia 124: 79–127.

    Google Scholar 

  • Cairns, J. Jr., K. M. Hart & M. S. Henebry, 1980. The effects of a sublethal dose of copper sulfate on the colonization rate of freshwater protozoan communities. The American Midland Naturalist 104: 93–101.

    Article  CAS  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. User Manual/Turorial. PRIMER-E Ltd., Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35: 523–531.

    Article  Google Scholar 

  • Finlay, B. J. & G. Uhlig, 1981. Calorific and carbon values of marine and freshwater protozoa. Helgoländer Meeresuntersuchungen 34: 401–412.

    Article  Google Scholar 

  • Foissner, W., H. Berger & J. Schaumberg, 1999. Identification and Ecology of Limnetic Plankton Ciliates. Bavarian State Office for Water Management, Munich.

    Google Scholar 

  • Fu, W., H. Fu, K. Skott & M. Yang, 2008. Modelling the spill in the Songhua River after the explosion in the petrochemical plant in Jilin. Environmental Science Pollution Research 15: 178–181.

    Article  CAS  Google Scholar 

  • Ismael, A. A. & M. M. Dorgham, 2003. Ecological indices as a tool for assessing pollution in El-Dekhaila Hoarbour (Alexandria, Egypt). Oceanologia 45: 121–131.

    Google Scholar 

  • Jiang, J., S. Wu & Y. Shen, 2007. Effects of seasonal succession and water pollution on the protozoan community structure in an eutrophic lake. Chemosphere 66: 523–532.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, D. R. P., K. R. Clarke, P. J. Somerfield & R. M. Warwick, 2006. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessment. Journal of Environmental Management 78: 52–62.

    Article  CAS  PubMed  Google Scholar 

  • Levine, N. D., J. O. Corliss, F. E. G. Cox, G. Droux, J. Grain, B. M. Honiberg, G. F. Leedale, A. R. Loeblich, J. Lom, D. Lynn, E. G. Merinfeld, F. C. Page, G. Poljansky, V. Sprague, J. Vavra & F. G. Wallace, 1980. A newly revised classification of the protozoa. Journal of Protozoology 27: 37–58.

    CAS  PubMed  Google Scholar 

  • Margalef, R., 1968. Perspectives in Ecological Theory. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Mouillot, D., S. Gaillard, C. Aliaume, M. Verlaque & T. Belsher, 2005. Ability of taxonomic diversity indices to discriminate coastal lagoon environment based on macrophyte communities. Ecological Indicators 5: 1–17.

    Article  Google Scholar 

  • Panswad, T. & O. Chavalparit, 1997. Water quality and occurrences of protozoa and metazoa in two constructed wetlands treating different wastewaters in Thailand. Water Science and Technology 36: 183–188.

    Article  CAS  Google Scholar 

  • Prato, S., J. G. Morgana, P. La Valle, M. G. Finoia & L. Lattanzi, 2009. Application of biotic and taxonomic distinctness indices in assessing the ecological quality status of two coastal lakes: Gaprolace and Foglino Lakes (Central Italy). Ecological Indicators 9: 568–583.

    Article  Google Scholar 

  • Patterson, D. J. & D. Hedley, 1992. Free-Living Freshwater Protozoa: A Colour Guide. Wolfe Publishing, London.

    Google Scholar 

  • Shen, Y., Z. Zhang, X. Gong, M. Gu, Z. Shi & Y. Wei, 1990. Modern Biomonitoring Techniques Using Freshwater Microbiota. China Architecture Building Press, Beijing.

    Google Scholar 

  • Sherr, B. F., 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In Klug, M. J. & C. A. Reddy (eds), Current Perspectives in Microbial Ecology. American Society of Microbiology, Washington DC: 412–423.

    Google Scholar 

  • Small, E. B., 1973. As study of ciliate protozoa from as a small-polluted stream in east central Illinois. American Zoologist 13: 225–230.

    Google Scholar 

  • Sørensen, T., 1948. A method of establishing groups of equivalent amplitude in plant sociology based on the similarity of species contents and its application to analysis of the vegetation of Danish Commons. Biologiske Skrifter Kongelige Danske Videnskabernes Selskab 5: 1–34.

    Google Scholar 

  • Vymazal, J., V. Sládeček & J. Stach, 2001. Biota participating in wastewater treatment in a horizontal flow constructed wetland. Water Science and Technology 44: 211–214.

    CAS  PubMed  Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 1995. New “biodiversity” measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series 129: 301–305.

    Article  Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 1998. Taxonomic distinctness and environmental assessment. Journal of Applied Ecology 35: 532–543.

    Article  Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 2001. Practical measures of marine biodiversity based on relatedness. Oceanography and Marine Biology 39: 207–231.

    Google Scholar 

  • Xu, M., H. Cao, P. Xie, D. Deng, W. Feng & J. Xu, 2005. Use of PFU protozoan community structural and functional characteristics in assessment of water quality in a large, highly polluted freshwater lake in China. Journal of Environmental Monitoring 7: 670–674.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., W. Song, A. Warren, K. A. S. Al-Rasheid, S. A. Al-Farraj, J. Gong & X. Hu, 2008. Planktonic protist communities in a semi-enclosed mariculture pond: structural variation and correlation with environmental conditions. Journal of the Marine Biological Association of the United Kingdom 88: 1353–1362.

    Article  Google Scholar 

  • Xu, H., G. K. Min, J. K. Choi, J. H. Jung & M. H. Park, 2009a. An approach to analyses of periphytic ciliate colonization for monitoring water quality using a modified artificial substrate in Korean coastal waters. Marine Pollution Bulletin 58: 1278–1285.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., G. K. Min, J. K. Choi, S. J. Kim, J. H. Jung & B. J. Lim, 2009b. An approach to analyses of periphytic ciliate communities for monitoring water quality using a modified artificial substrate in Korean coastal waters. Journal of the Marine Biological Association of the United Kingdom 89: 669–679.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Natural Science Foundation of China (30670222)”, and “State Key Laboratory of Freshwater Ecology and Biotechnology of China (2009FB11)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinlu Shi or Henglong Xu.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Shi, X., Liu, G. et al. An approach to analyzing taxonomic patterns of protozoan communities for monitoring water quality in Songhua River, northeast China. Hydrobiologia 638, 193–201 (2010). https://doi.org/10.1007/s10750-009-0040-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0040-2

Keywords

Navigation