Skip to main content

Advertisement

Log in

Ecosystem thresholds with hypoxia

  • EUTROPHICATION IN COASTAL ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hypoxia is one of the common effects of eutrophication in coastal marine ecosystems and is becoming an increasingly prevalent problem worldwide. The causes of hypoxia are associated with excess nutrient inputs from both point and non-point sources, although the response of coastal marine ecosystems is strongly modulated by physical processes such as stratification and mixing. Changes in climate, particularly temperature, may also affect the susceptibility of coastal marine ecosystems to hypoxia. Hypoxia is a particularly severe disturbance because it causes death of biota and catastrophic changes in the ecosystem. Bottom water oxygen deficiency not only influences the habitat of living resources but also the biogeochemical processes that control nutrient concentrations in the water column. Increased phosphorus fluxes from sediments into overlying waters occur with hypoxia. In addition, reductions in the ability of ecosystems to remove nitrogen through denitrification and anaerobic ammonium oxidation may be related to hypoxia and could lead to acceleration in the rate of eutrophication. Three large coastal marine ecosystems (Chesapeake Bay, Northern Gulf of Mexico, and Danish Straits) all demonstrate thresholds whereby repeated hypoxic events have led to an increase in susceptibility of further hypoxia and accelerated eutrophication. Once hypoxia occurs, reoccurrence is likely and may be difficult to reverse. Therefore, elucidating ecosystem thresholds of hypoxia and linking them to nutrient inputs are necessary for the management of coastal marine ecosystems. Finally, projected increases in warming show an increase in the susceptibility of coastal marine ecosystems to hypoxia such that hypoxia will expand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, R. B., R. A. Smith, G. E. Schwarz, E. W. Boyer, J. W. Nolan & J. W. Brakebill, 2008. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River basin. Environmental Science & Technology 42: 822–830.

    Article  CAS  Google Scholar 

  • Carstensen, J., D. J. Conley, J. H. Andersen & G. Ærtebjerg, 2006. Coastal eutrophication and trend reversal: a Danish case study. Limnology & Oceanography 51: 398–408.

    Google Scholar 

  • Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W. T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C. G. Menéndez, J. Räisänen, A. Rinke, A. Sarr & P. Whetton, 2007. Regional climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 847–940.

    Google Scholar 

  • Collie, J. S., K. Richardson & J. H. Steele, 2004. Regime shifts: can ecological theory illuminate the mechanisms? Progress in Oceanography 60: 281–302.

    Article  Google Scholar 

  • Conley, D. J., 1999. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410: 87–96.

    Article  Google Scholar 

  • Conley, D. J., C. Humborg, L. Rahm, O. P. Savchuk & F. Wulff, 2002. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science & Technology 36: 5315–5320.

    Article  CAS  Google Scholar 

  • Conley, D. J., J. Carstensen, G. Ærtebjerg, P. B. Christensen, T. Dalsgaard, J. L. S. Hansen & A. B. Josefson, 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecological Applications 17: S165–S184.

    Article  Google Scholar 

  • Dalsgaard, T., D. E. Canfield, J. Petersen, B. Thamdrup & J. Acuha-Gonzalez, 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422: 606–608.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, C., J. L. Sarmiento, D. M. Sigman, N. Gruber & J. P. Dunne, 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445: 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Díaz, R. J., 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30: 275–281.

    PubMed  Google Scholar 

  • Díaz, R. J. & R. Rosenberg, 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: Annual Review 33: 245–303.

    Google Scholar 

  • Díaz, R. J. & R. Rosenberg, 2008. Spreading dead zone and consequences for marine ecosystems. Science 321: 926–929.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, C. M., D. J. Conley, J. Carstensen &, M. Sánchez-Camacho, 2009. Return to Neverland: shifting baselines affect ecosystem restoration targets. Estuaries & Coasts 32: 29–36.

    Article  CAS  Google Scholar 

  • Eyre, B. D. &, A. J. P. Ferguson, 2009. Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. Hydrobiologia (this issue). doi:10.1007/s10750-009-9765-1.

  • Gombay, E. & L. Horvath, 1996. On the rate of approximations for maximum likelihood tests in change-point models. Journal of Multivariate Analysis 56: 120–152.

    Article  Google Scholar 

  • Gray, J. S., R. S.-s Wu & Y. Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249–279.

    Article  Google Scholar 

  • Groffman, P., M. A. Altabet, J. K. Böhlke, K. Butterbach-Bahl, M. B. David, M. K. Firestone, A. E. Giblin, T. M. Kana, L. P. Nielsen & M. A. Voytek, 2006. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications 9: 1–13.

    Google Scholar 

  • Hagy, J. D., W. R. Boynton, C. W. Keefe & K. V. Wood, 2004. Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27: 634–658.

    Article  CAS  Google Scholar 

  • Hannig, M., G. Lavik, M. M. M. Kuypers, D. Woebken, W. Martens-Habbena & K. Jürgens, 2007. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnology & Oceanography 52: 1336–1345.

    CAS  Google Scholar 

  • Hansen, J. L. S. &, J. Bendtsen (2006). Climatic induced effects on marine ecosystems. National Environmental Research Institute, Roskilde, Denmark. Technical Report No. 598 (in Danish). http://technical-reports.dmu.dk.

  • Harris, L. A., C. M. Duarte & S. Nixon, 2006. Allometric laws and prediction in coastal and estuarine ecology. Estuaries 29: 343–347.

    Google Scholar 

  • HELCOM, 2003. The 2002 oxygen depletion event in the Kattegat, Belt Sea and Western Baltic. Baltic Sea Environment Proceedings No. 90. Helsinki Commission for Protection of the Baltic Sea.

  • Holmer, M., C. M. Duarte & N. Marbá, 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66: 223–239.

    Article  CAS  Google Scholar 

  • Jensen, H. S., P. B. Mortensen, F. Ø. Andersen, E. Rasmussen & A. Jensen, 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnology & Oceanography 40: 908–917.

    CAS  Google Scholar 

  • Karlson, K., R. Rosenberg & E. Bonsdorff, 2002. Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters—A review. Oceanography and Marine Biology Annual Review 40: 427–489.

    Google Scholar 

  • Kemp, W. M., P. Sampou, J. Caffrey & M. Mayer, 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnology & Oceanography 35: 1545–1563.

    Article  CAS  Google Scholar 

  • Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. I. E. Newell, M. R. Roman, E. M. Smith & J. C. Stevenson, 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Mee, L., 2006. Reviving Dead Zones. Scientific American. pp. 79–86.

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water. Journal of Ecology 29: 280–329.

    Article  CAS  Google Scholar 

  • Muradian, R., 2001. Ecological thresholds: a survey. Ecological Economics 38: 7–24.

    Article  Google Scholar 

  • Nixon, S. W., J. R. Kelly, B. N. Furnas, C. A. Oviatt & S. S. Hale, 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In K. R. Tenore & B. C. Coull (eds), Marine Benthic Dynamics. University of South Carolina Press, USA: 219–242.

  • Oguz, T. & D. Gilbert, 2007. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960–2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep Sea Research Part I 54: 220–242.

    Article  Google Scholar 

  • Österblom, H., S. Hansen, U. Larsson, O. Hjerne, F. Wulff, R. Elmgren & C. Folke, 2007. Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems doi:10.1007/s10021-007-9069-0.

  • Rabalais, N. N., R. E. Turner & W. J. Wiseman Jr., 2002. Gulf of Mexico hypoxia, A.K.A. ‘The Dead Zone’. Annual Review of Ecology and Systematics 33: 235–263.

    Article  Google Scholar 

  • Rask, N., S. T. Petersen & M. H. Jensen, 1999. Responses to lowered nutrient discharges in the coastal waters around the island of Funen, Denmark. Hydrobiologia 393: 69–81.

    Article  CAS  Google Scholar 

  • Roeckner, E., L. Bengtsson & J. Feichter, 1999. Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. Journal of Climate 12: 3004–3032.

    Article  Google Scholar 

  • Scavia, D., N. N. Rabalais, R. E. Turner, D. Justic & W. Wiseman Jr., 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology & Oceanography 48: 951–956.

    Article  CAS  Google Scholar 

  • Scavia, D., E. A. Kelly & J. D. Hagy III, 2006. A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Estuaries and Coasts 29: 674–684.

    CAS  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Seitzinger, S. P. & A. E. Giblin, 1996. Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35: 235–260.

    Article  CAS  Google Scholar 

  • Sloth, N. P., H. Blackburn, L. S. Hansen, N. Risgaargd-Petersen & B. A. Lomstein, 1995. Nitrogen cycling in sediments with different organic loading. Marine Ecology Progress Series 116: 163–170.

    Article  CAS  Google Scholar 

  • Smith, S. V. & J. T. Hollibaugh, 1989. Carbon-controlled nitrogen cycling in a marine ‘macrocosm’: an ecosystem-scale model for managing cultural eutrophication. Marine Ecology Progress Series 52: 103–109.

    Article  Google Scholar 

  • Smith, D. E., M. Leffler & G. Mackiernan, 1992. Oxygen dynamics in the Chesapeake Bay. A synthesis of recent research. University of Maryland, Maryland Sea Grant.

    Google Scholar 

  • Soetaert, K. & J. J. Middelburg, 2009. Modeling eutrophication and oligotrophication of shallow-water marine systems: the importance of sediments under stratified and well mixed conditions. Hydrobiologia (this issue). doi:10.1007/s10750-009-9777-x.

  • Turner, R. E., N. N. Rabalais & D. Justic, 2008. Gulf of Mexico hypoxia: alternative states and a legacy. Environmental Science & Technology 42: 2323–2327.

    Article  CAS  Google Scholar 

  • Vahtera, E., D. J. Conley, B. Gustaffson, H. Kuosa, H. Pitkanen, O. Savchuk, T. Tamminen, N. Wasmund, M. Viitasalo, M. Voss & F. Wulff, 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36: 186–194.

    Article  PubMed  CAS  Google Scholar 

  • Vaquer-Sunyer, R. & C. M. Duarte, 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Science 105: 15452–15457.

    Article  CAS  Google Scholar 

  • Webster, I. T. & G. P. Harris, 2004. Anthropogenic impacts on the ecosystems of coastal lagoons: modeling fundamental biological processes and management implications. Marine and Freshwater Research 55: 67–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Conley.

Additional information

Guest editors: J. H. Andersen & D. J. Conley

Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, D.J., Carstensen, J., Vaquer-Sunyer, R. et al. Ecosystem thresholds with hypoxia. Hydrobiologia 629, 21–29 (2009). https://doi.org/10.1007/s10750-009-9764-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9764-2

Keywords

Navigation