Skip to main content
Log in

Using bio-optics to investigate the extent of coastal waters: A Swedish case study

  • EUTROPHICATION IN COASTAL ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In order to develop an optical model to map the extent of coastal waters, the authors analyzed variations in bio-optical constituents and submarine optical properties along a transect from the nutrient-enriched coastal bay, Himmerfjärden, out into the open Baltic Sea. The model is a simple implementation of the “ecosystem approach,” because the optical constituents are proxies for important components of ecosystem state. Yellow substance or colored dissolved organic matter (CDOM) is often a marker for terrestrial freshwater or decay processes in the littoral zone. Phytoplankton pigments, especially chlorophyll a, are used as a proxy for phytoplankton biomass that may be stimulated by fluvial or coastal inputs of anthropogenic nutrients. Suspended particulate matter (SPM) is placed in suspension by tidal or wind-wave stirring of shallow seabeds, and is therefore an indicator for physical forcing. It is the thesis of this article that such constituents, and the optical properties that they control, can be used to provide an ecological definition of the extent of the coastal zone. The spatial distribution of the observations was analyzed using a steady-state model that assumes diffusional transport of bio-optical variables along an axis perpendicular to the coast. According to the model, the resulting distribution along this axis can be described as a low-order polynomial (of order 1–3) when moving from a “source” associated with land to the open-sea “sink.” Order 1 implies conservative mixing, and the higher orders imply significant biological or chemical processes within the gradient. The analysis of the transect data confirmed that the trend of each optical component could be described well using a low-order polynomial. Multiple regression analysis was then used to weigh the contribution of each optical component to the spectral attenuation coefficient K d(490) along the transect. The results showed that in this Swedish Baltic case study, the inorganic fraction of the SPM may be used to distinguish between coastal and open-sea waters, as it showed a clear break between coastal and open-sea waters. Alternative models may be needed for coastal waters in which fronts interrupt the continuity of mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Borja, A., 2005. The European water framework directive: a challenge for nearshore, coastal and continental shelf research. Continental Shelf Research 25: 1768–1783.

    Article  Google Scholar 

  • Cifuentes, L. A., L. E. Schemel & J. H. Sharp, 1990. Qualitative and numerical analyses of the effects of river inflow variations on mixing diagrams in estuaries. Estuarine, Coastal and Shelf Science 30: 411–427.

    Article  CAS  Google Scholar 

  • Cleveland, J. S. & A. D. Weidemann, 1993. Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fibre filters. Limnology and Oceanography 38: 1321–1327.

    Article  CAS  Google Scholar 

  • Darecki, M. & D. Stramski, 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing Environment 89: 326–350.

    Article  Google Scholar 

  • Doerffer, R., 2002. Protocols for the validation of MERIS water products. European Space Agency, Doc. No. PO-TN-MEL-GS-0043.

  • Elmgren, R. & U. Larsson, 2001. Eutrophication in the Baltic Sea area: integrated coastal management issues. In von Bodungen, B. & R. K. Turner (eds), Science and Integrated Coastal Management. Dahlem University Press, Berlin: 15–35.

    Google Scholar 

  • Engqvist, A., 1996. Long-term nutrient balances in eutrophication of the Himmerfjärden estuary. Estuarine, Coastal and Shelf Science 42: 483–507.

    Article  CAS  Google Scholar 

  • European Communities, 2000. Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327: 1–73.

    Google Scholar 

  • Fowler, J., L. Cohen & P. Jarvis, 1998. Practical Statistics for Field Biology. John Wiley & Sons, Chinchester.

    Google Scholar 

  • Garvine, R. W., 1986. The role of brackish plumes in open shelf waters. In Skreslet, S. (ed.), The Role of Freshwater Outflow in Coastal Marine Ecosystems. Springer-Verlag, Berlin: 47–65.

    Google Scholar 

  • Gidhagen, L., 1987. Coastal upwelling in the Baltic Sea – Satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling. Estuarine Coastal and Shelf Science 24: 449–462.

    Article  Google Scholar 

  • Hajdu, S., U. Larsson & K. Skärlund, 1997. Chapter 9: Växtplankton (Phytoplankton). In Elmgren, R. & U. Larsson (eds), Himmerfjärden. Naturvårdsverket Förlag, Stockholm, Rapport 4565.

  • Hansson, M., 2006. Cyanobakterieblomningar i Östersjön, resultat från satellitövervakningen 1997–2005. SMHI Rapport 82.

  • HELCOM, 2002. Environment of the Baltic Sea Area, Baltic Sea Environment Proceedings No. 82B. Helsinki Commission – Baltic Marine Environment Protection Commission.

  • Huthnance, J. M., 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Progress in Oceanography 35: 353–431.

    Article  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equation for determining chlorophyll a, b, c1 and c2. Biochemie und Physiologie der Pflanzen 167: 194–204.

    Google Scholar 

  • Jeffrey, S. W. & N. A. Welschmeyer, 1997. Appendix F: spectrophotometric and fluorometric equations in common use in oceanography. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography. Monographs on Oceanographic Methodology. UNESCO Publishing, Berlin: 597–615.

    Google Scholar 

  • Kahru, M., 1997. Using satellites to monitor large-scale environmental change: a case study of cyanobacteria blooms in the Baltic Sea. In Kahru, M. & C. W. Brown (eds), Monitoring Algal Blooms – New Techniques for Detecting Large-Scale Environmental Change. Springer-Verlag, Berlin: 43–61.

    Google Scholar 

  • Kahru, M., B. Håkansson & O. Rud, 1995. Distribution of sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery. Continental Shelf Research 15: 663–679.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kishino, M., M. Takahashi, N. Okami & S. Ichimura, 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bulletin of Marine Science 37: 634–642.

    Google Scholar 

  • Kowalczuk, P., J. Olszewski, M. Darecki & S. Kaczmarek, 2005. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. International Journal of Remote Sensing 26: 345–370.

    Article  Google Scholar 

  • Kowalczuk, P., C. A. Stedmon & S. Markager, 2006. Modelling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Marine Chemistry 101: 1–11.

    Article  CAS  Google Scholar 

  • Kratzer, S., 2000. Bio-optical studies of coastal waters. PhD thesis. School of Ocean Sciences, University of Wales, Bangor.

  • Kratzer, S., P. Land & N. Strömbeck, 1998. An optical in-water model for the Baltic Sea. Ocean Optics XIV Conference Papers, Vol. 2. New Insights from Ocean Color.

  • Kratzer, S., D. G. Bowers & P. Tett, 2000. Seasonal changes in colour ratios and optically active constituents in the optical Case-2 waters of the Menai Strait, North Wales. International Journal of Remote Sensing 21: 2225–2246.

    Article  Google Scholar 

  • Kratzer, S., B. Håkansson & C. Sahlin, 2003. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data. Ambio 32: 577–585.

    PubMed  Google Scholar 

  • Kratzer, S., C. Brockmann & G. Moore, 2008. Using MERIS full resolution data to monitor coastal waters – A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sensing Environment 112(5): 2284–2300.

    Article  Google Scholar 

  • Krężel, A., M. Ostrowski & M. Szymelfenig, 2005. Sea surface temperature distribution during upwelling along the Polish Baltic coast. Oceanologia 47: 415–432.

    Google Scholar 

  • Kullenberg, G., 1981. Physical oceanography. In Voipio, A. (ed.), The Baltic Sea. Elsevier Oceanography Series 30, Amsterdam.

  • Larsson, U., S. Hajdu, J. Walve & R. Elmgren, 2001. Estimating Baltic nitrogen fixation from the summer increase in upper mixed layer total nitrogen. Limnology and Oceanography 46: 811–820.

    CAS  Google Scholar 

  • Lehmann, A., W. Krauss & H.-H. Hinrichsen, 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus 54A: 299–316.

    Google Scholar 

  • McKay, W. A., M. S. Baxter, D. J. Ellett & D. T. Meldrum, 1986. Radiocaesium and circulation patterns west of Scotland. Journal of Environmental Radioactivity 4: 205–232.

    Article  CAS  Google Scholar 

  • Meier, H. E. M. & F. Kauker, 2003. Sensitivity of the Baltic Sea salinity to the freshwater supply. Climate Research 24: 231–242.

    Article  Google Scholar 

  • Milliman, J. D., 2001. Delivery and fate of fluvial water and sediment to the sea: a marine geologist’s view of European rivers. Scientia Marina 65: 121–132.

    Article  Google Scholar 

  • Morel, A. & L. Prieur, 1977. Analysis of variations in ocean colour. Limnology and Oceanography 22: 709–722.

    Google Scholar 

  • Mueller, L. J., 2000. SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm. In Hooker S. B. & E. R. Firestone (eds), SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, 11. NASA Goddard Space Flight Center, Greenbelt, MD: 24–27.

  • Myrberg, K. & O. Andrejev, 2003. Main upwelling regions in the Baltic Sea – A statistical analysis based on three-dimensional modeling. Boreal Environment Research 8: 97–112.

    Google Scholar 

  • Okubo, A., 1974. Some speculations on oceanic diffusion diagrams. Rapport et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer 167: 77–85.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press.

  • Pierson, D., S. Kratzer, N. Strömbeck & B. Håkansson, 2008. Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea. Remote Sensing of Environment 112(3): 668–680.

    Article  Google Scholar 

  • Savage, C., R. Elmgren & U. Larsson, 2002. Effects of sewage-derived nutrients on an estuarine macrobenthic community. Marine Ecology Progress Series 243: 67–82.

    Article  Google Scholar 

  • Siegel, H., M. Gerth, G. Tschersich, T. Ohde & T. Heene, 2005. Ocean colour remote sensing relevant water constituents and optical properties of the Baltic Sea. International Journal of Remote Sensing 26: 315–330.

    Article  Google Scholar 

  • Simpson, J. H. & A. E. Hill, 1986. The Scottish coastal current. In Skreslet, S. (ed.), The Role of Freshwater Outflow in Coastal Marine Ecosystems, Vol. G7. Springer-Verlag, Berlin: 195–204.

    Google Scholar 

  • Smith, R. C. & K. S. Baker, 1981. Optical properties of the clearest natural waters (200–800 nm). Applied Optics 20: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen, K., M. Grung & R. Röttgers, 2003. An intercomparison of in vitro chlorophyll-a determinations. Proceedings of the MERIS Cal/Val Meeting at ESRIN, Frascati, Italy, 10–11 December.

  • Stigebrandt, A., 2001. Chapter 2: physical oceanography of the Baltic Sea. In Wulff, F., L. Rahm & P. Larsson (eds), A System Analysis of the Baltic Sea. Springer Verlag, Berlin: 19–74.

    Google Scholar 

  • Strickland, J. H. D. & T. R. Parsons, 1972. A practical handbook of sea-water analysis. Bulletin Journal of the Fisheries Research Board of Canada 167: 185–203.

    Google Scholar 

  • Subramaniam, A., S. Kratzer, E. J. Carpenter & E. Soderback, 2000. Remote sensing and optical in-water measurements of a cyanobacteria bloom in the Baltic Sea. Proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments 1: 57–64.

    Google Scholar 

  • Tett, P., L. Gilpin, H. Svendsen, C. P. Erlandsson, U. Larsson, S. Kratzer, E. Fouilland, C. Janzen, J.-Y. Lee, C. Grenz, A. Newton, J. G. Ferreira, T. Fernandes & S. Scory, 2003. Eutrophication and some European waters of restricted exchange. Continental Shelf Research 23: 1635–1671.

    Article  Google Scholar 

  • The H. John Heinz III Center for Science, Economics, and the Environment, 2002. The State of the Nation’s Ecosystems: Measuring the Lands, Waters, and Living Resources of the United States. Cambridge University Press, Cambridge.

  • UNCLOS, 1982. United Nations Convention on the Law of the Sea, 10 December 1982.

  • Victorov, S. V., 1996. Regional Satellite Oceanography. Taylor & Francis, London.

    Google Scholar 

  • Voipio, A., 1981. The Baltic Sea. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Swedish National Space Board, the EU FP5 project Oceanographic Applications to Eutrophication in Regions of Restricted Exchange (OAERRE), the EU FP6 project Science and Policy Integration for Coastal System Assessment (SPICOSA), and by the Swedish MISTRA program under RESE 5 (Remote sensing for the environment—Methods for detection of changes in aquatic ecosystems and monitoring of algal blooms). Thanks to the Swedish Wallenberg Foundation for an expensive equipment grant. Thanks to Stefanie Hirch, Roberta Mistretta, Antonia Sandman, and Charlotte Sahlin for their help in the field and the laboratory, to Henrik Lindh (SMHI) and the staff of the Askö Laboratory for support during fieldwork. Many thanks to Miho Ishii and Roberta Mistretta for processing the AVHRR data, and to Bertil Håkannsson for his support. Thanks to Paul Sweeny from the U.S. Environmental Protection Agency for information on coastal zone definitions in the USA. Special thanks to Roland Doerffer, Anders Engqvist, Ragnar Elmgren, and Ulf Larsson for discussions and useful comments to the manuscript, and to Miguel Rodriguez Medina for preparing the images of temperature profiles for 2001 and 2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Kratzer.

Additional information

Guest editors: J. H. Andersen & D. J. Conley

Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratzer, S., Tett, P. Using bio-optics to investigate the extent of coastal waters: A Swedish case study. Hydrobiologia 629, 169–186 (2009). https://doi.org/10.1007/s10750-009-9769-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9769-x

Keywords

Navigation