Skip to main content

Advertisement

Log in

Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient

  • GLOBAL CHANGE AND RIVER ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study examined the effects land use on biomass and ecological stoichiometry of periphyton in 36 streams in southeastern New York State (USA). We quantified in-stream and land-use variables along a N–S land-use gradient at varying distances from New York City (NYC). Streams draining different landscapes had fundamentally different physical, chemical, and biological properties. Human population density significantly decreased (r = −0.739; P < 0.00001), while % agricultural land significantly increased (r = 0.347; P = 0.0379) with northing. Turbidity, temperature, conductivity, and dissolved Mg, Ca, SRP, pH, DOC, and Si significantly increased in more urban locations, but NO3 and NH4 + did vary not significantly along the gradient. Periphyton biomass (as AFDM and Chl-a) in rural streams averaged one-third to one-fifth that measured in urban locations. Periphyton biomass in urban streams averaged 18.8 ± 6.0 g/m2 AFDM and 75.6 ± 28.5 mg/m2 Chl-a. Urban Chl-a levels ranging between 100 and 200 mg/m2, are comparable to quantities measured in polluted agricultural streams in other regions, but in our study area was not correlated with % agricultural land. Periphyton nutrient content also varied widely; algal C varied >20-fold (0.06–1.7 μmol/mm2) while N and P content varied >6-fold among sites. Algal C, N, and P correlated negatively with distance from NYC, suggesting that periphyton in urban streams may provide greater nutrition for benthic consumers. C:N ratios averaged 7.6 among streams, with 91% very close to 7.5, a value suggested as the optimum for algal growth. In contrast, periphyton C:P ratios ranged from 122 to >700 (mean = 248, twice Redfield). Algal-P concentrations were significantly greater in urban streams, but data suggest algal growth was P-limited in most streams regardless of degree of urbanization. GIS models indicate that land-use effects did not easily fit into strict categories, but varied continuously from rural to urban conditions. We propose that the gradient approach is the most effective method to characterize the influence of land use and urbanization on periphyton and stream function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Public Health Association, 1985. Standard Methods for the Analysis of Water and Wastewater, 16th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Biggs, B. J. F., 1995. The contribution of flood disturbance, catchment geology and land use to the habitat template of periphyton in stream ecosystems. Freshwater Biology 33: 419–438.

    Article  Google Scholar 

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA: 31–56.

    Google Scholar 

  • Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22: 209–231.

    Article  CAS  Google Scholar 

  • Blinn, D. W. & P. C. Bailey, 2001. Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. Hydrobiologia 466: 231–244.

    Article  CAS  Google Scholar 

  • Bothwell, M. L., 1985. Phosphorus limitation of lotic periphyton growth rate: an intersite comparison using continuous-flow troughs (Thompson River system, British Columbia). Limnology and Oceanography 30: 527–542.

    Article  Google Scholar 

  • Bothwell, M. L., 1988. Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: the influence of temperature and light. Canadian Journal of Fisheries and Aquatic Sciences 45: 261–270.

    Article  Google Scholar 

  • Bran+Luebbe Analyzing Technologies, 1986a. Ortho-phosphate in Water and Seawater. Industrial Method No. 812-86T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL.

  • Bran+Luebbe Analyzing Technologies, 1986b. Ammonium in Water and Seawater. Industrial Method No. 804-86T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL.

  • Bran+Luebbe Analyzing Technologies, 1987a. Nitrate/Nitrite in Water and Seawater. Industrial Method No. 818-87T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL.

  • Bran+Luebbe Analyzing Technologies, 1987b. Silicates in Water and Seawater. Industrial Method No. 785-86T. Bran+Luebbe Analyzing Technologies, Buffalo Grove, IL.

  • Carr, G. M., P. A. Chambers & A. Morin, 2005. Periphyton, water quality, and land use at multiple spatial scales in Alberta rivers. Canadian Journal of Fisheries and Aquatic Sciences 62: 1309–1319.

    Article  CAS  Google Scholar 

  • Chessman, B. C., E. Primrose, H. Burch & J. M. Burch, 1992. Limiting nutrients for periphyton growth in sub-alpine, forest, agricultural and urban streams. Freshwater Biology 28: 349–361.

    Article  Google Scholar 

  • Chételat, J., F. R. Pick, A. Morin & P. B. Hamilton, 1999. Periphyton biomass and community composition in rivers of different nutrient status. Canadian Journal of Fisheries and Aquatic Sciences 56: 560–569.

    Article  Google Scholar 

  • Cross, W. F., J. P. Benstead, A. D. Rosemond & J. B. Wallace, 2003. Consumer-resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732.

    Article  Google Scholar 

  • Dodds, W. K., V. H. Smith & K. Lohman, 2002. Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 865–874.

    Article  Google Scholar 

  • Dodds, W. K., E. Mart, J. L. Tank, J. Pontius, S. K. Hamlton, N. B. Grimm, W. B. Bowden, W. H. McDowell, B. J. Peterson, H. M. Valett, J. R. Webster & S. Gregory, 2004. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia 140: 458–467.

    Article  PubMed  Google Scholar 

  • Eisenreich, S. J., R. T. Bannerman & D. E. Armstrong, 1975. A simplified phosphorus analysis technique. Environmental Letters 9: 43–53.

    Article  CAS  Google Scholar 

  • Finlay, J. C., S. Khandwala & M. E. Power, 2002. Spatial scales of carbon flow in a river food web. Ecology 83: 1845–1859.

    Article  Google Scholar 

  • Fitzpatrick, F. A., I. Waite, P. J. D’Arconte, M. R. Meador, M. A. Maupin & M. E. Gurtz, 1998. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program. U.S. Department of the Interior, U.S. Geological Survey, Water Resources Division, Raleigh, NC: 67 pp.

    Google Scholar 

  • Francoeur, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20: 358–368.

    Article  Google Scholar 

  • Francoeur, S. N., B. J. F. Biggs, R. A. Smith & R. L. Lowe, 1999. Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. Journal of the North American Benthological Society 18: 242–260.

    Article  Google Scholar 

  • Frost, P. C. & J. J. Elser, 2002. Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters 5: 232–240.

    Article  Google Scholar 

  • Frost, P. C., H. Hillebrand & M. Kahlert, 2005. Low algal carbon content and its effect on the C:P stoichiometry of periphyton. Freshwater Biology 50: 1800–1807.

    Article  CAS  Google Scholar 

  • Godwin, C. M. & H. J. Carrick, 2008. Spatio-temporal variation of periphyton biomass and accumulation in a temperate spring-fed stream. Aquatic Ecology 42: 583–595.

    Article  CAS  Google Scholar 

  • Graham, M. H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809–2815.

    Article  Google Scholar 

  • Greenwood, J. L. & A. D. Rosemond, 2005. Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Canadian Journal of Fisheries and Aquatic Sciences 62: 2033–2045.

    Article  CAS  Google Scholar 

  • Hart, D. D., 1987. Experimental studies of exploitative competition in a grazing stream insect. Oecologia 73: 41–47.

    Article  Google Scholar 

  • Hill, W. R. & S. E. Fanta, 2008. Phosphorus and light colimit periphyton growth at subsaturating irradiances. Freshwater Biology 53: 215–225.

    CAS  Google Scholar 

  • Hillebrand, H. & U. Sommer, 1999. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnology and Oceanography 44: 440–446.

    Article  Google Scholar 

  • Hillebrand, H., G. de Montpellier & A. Liess, 2004. Effects of macrograzers and light on periphyton stoichiometry. Oikos 106: 93–104.

    Article  Google Scholar 

  • Hirsch, R. M., J. F. Walker, J. C. Day & R. Kallio, 1990. The influence on man on hydrologic systems. In Woleman, M. G. & H. C. Riggs (eds), Surface Water Hydrology. Geological Society of America, Boulder, CO: 329–359.

    Google Scholar 

  • Liess, A. & H. Hillebrand, 2006. Role of nutrient supply in grazer-periphyton interactions: reciprocal influences of periphyton and grazer nutrient stoichiometry. Journal of the North American Benthological Society 25: 632–642.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology & Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • McDonnell, M. J., S. T. A. Pickett, P. Groffman, P. Bohlen, R. V. Pouyat, W. C. Zipperer, R. W. Parmelee, M. M. Carreiro & K. Medley, 1997. Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems 1: 21–36.

    Article  Google Scholar 

  • McMahon, G. & T. F. Cuffney, 2000. Quantifying urban intensity in drainage basins for assessing stream ecological conditions. Journal of the American Water Resources Association 36: 1247–1262.

    Article  Google Scholar 

  • Meybeck, M., 1998. Man and river interface: multiple impacts on water and particulates chemistry illustrated in the Seine River Basin. Hydrobiologia 373: 1–20.

    Article  Google Scholar 

  • Murdock, J., D. Roelke & F. Gelwick, 2004. Interactions between flow, periphyton, and nutrients in a heavily impacted urban stream: implications for stream restoration effectiveness. Ecological Engineering 22: 197–207.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufman & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic highland streams, USA. Journal of Phycology 35: 460–468.

    Article  Google Scholar 

  • Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32: 333–365.

    Article  Google Scholar 

  • Pickett, S. T. A., M. L. Cadenasso, J. M. Grove, C. H. Nilon, R. V. Pouyat, W. C. Zipperer & R. Costanza, 2001. Urban ecological systems: linking terrestrial ecological, physical and socio-economic components of metropolitan areas. Annual Review of Ecology and Systematics 32: 127–157.

    Article  Google Scholar 

  • Pluhowski, E. J., 1970. Urbanization and its effect on the temperature of streams in Long Island, New York. USGS Professional Paper 627-D.

  • Ponader, K. C., D. F. Charles, T. J. Belton & D. M. Winter, 2008. Total phosphorus inference models and indices for coastal plains streams based on benthic diatom assemblages from artificial substrates. Hydrobiologia 610: 139–152.

    Article  CAS  Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Rier, S. T. & R. J. Stevenson, 2006. Response of periphytic algae to gradients in nitrogen and phosphorus in streamside mesocosms. Hydrobiologia 561: 131–147.

    Article  CAS  Google Scholar 

  • Rothlisberger, J. D., M. A. Baker & P. C. Frost, 2008. Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. Journal of the North American Benthological Society 27: 497–508.

    Article  Google Scholar 

  • Schiller, D. V., E. Martí, J. L. Riera & F. Sabater, 2007. Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology 52: 891–906.

    Article  Google Scholar 

  • Snyder, E. B., C. T. Robinson, G. W. Minshall & S. R. Rushforth, 2002. Regional patterns in periphyton accrual and diatom assemblage structure in a heterogeneous nutrient landscape. Canadian Journal of Fisheries and Aquatic Sciences 59: 567–577.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd ed. W.H. Freeman and Company, NY.

    Google Scholar 

  • Solórzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–758.

    Article  Google Scholar 

  • Sonoda, K. & J. A. Yeakley, 2007. Relative effects of land use and near-stream chemistry on phosphorus in an urban stream. Journal of Environmental Quality 36: 144–154.

    Article  CAS  PubMed  Google Scholar 

  • Sprague, L. A., D. A. Harned, D. W. Hall, L. H. Nowell, N. J. Bauch, & K. D. Richards, 2007. Response of stream chemistry during base flow to gradients of urbanization in selected locations across the conterminous United States, 2002–04. USGS Scientific Investigations Report # 2007–5083.

  • Stelzer, R. S. & G. A. Lamberti, 2002. Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology 83: 1039–1051.

    Article  Google Scholar 

  • Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed. EPA 841-B-99-002, USEPA, Washington, DC: 6-1–6-23.

  • Stevenson, R. J., M. L. Bothwell & R. L. Lowe, 1996. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA.

    Google Scholar 

  • Strayer, D. L., R. E. Beighley, L. C. Thompson, S. Brooks, C. Nilsson, G. Pinay & R. J. Naiman, 2003. Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6: 407–423.

    Article  Google Scholar 

  • Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society 26: 509–522.

    Article  Google Scholar 

  • Tufford, D. L., H. N. McKellar Jr. & J. R. Hussey, 1998. In-stream nonpoint source nutrient prediction with land-use proximity and seasonality. Journal of Environmental Quality 27: 100–111.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. 1987. Handbook of Methods for Acid Deposition Studies. Laboratory Analysis for Surface Water Chemistry. EPA600/4-87/026. Washington, DC.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Walker, C. E. & Y. Pan, 2006. Using diatom assemblages to assess urban stream conditions. Hydrobiologia 561: 179–189.

    Article  CAS  Google Scholar 

  • Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman & R. P. Morgan II, 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723.

    Google Scholar 

  • Wang, X. & Z.-Y. Yin, 1997. Using GIS to assess the relationship between land use and water quality at a watershed level. Environment International 23: 103–114.

    Article  CAS  Google Scholar 

  • Wehr, J. D. & R. G. Sheath, 2003. Freshwater habitats of algae. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America. Academic Press, San Diego, CA: 11–57.

    Chapter  Google Scholar 

  • Welch, E. B., J. M. Jacoby, R. R. Horner & M. R. Seeley, 1988. Nuisance biomass levels of periphytic algae in streams. Hydrobiologia 157: 161–168.

    CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 4th ed. Academic Press, San Diego, CA.

    Google Scholar 

  • Winter, J. G. & H. C. Duthie, 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19: 32–49.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alissa Perrone for technical assistance in the laboratory, John Tirpak for advice with GIS analyses, and Drs. William Giuliano and Amy Tuininga for comments on an earlier draft of this article. POB received financial support from Fordham University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Wehr.

Additional information

Guest editors: R. J. Stevenson, S. Sabater / Global Change and River Ecosystems—Implications for Structure, Function and Ecosystem Services

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Brien, P.J., Wehr, J.D. Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. Hydrobiologia 657, 89–105 (2010). https://doi.org/10.1007/s10750-009-9984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9984-5

Keywords

Navigation