Skip to main content
Log in

Microhabitat–zooplankton relationship in extensive macrophyte vegetations of eutrophic clear-water ponds

  • AQUATIC WEEDS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The influence of different macrophyte taxa or growth forms on biological and environmental variables is often analysed in one-lake studies. However, the unique combination of non-vegetational characteristics of a waterbody, i.e. its site identity, can be an influential factor in itself, shaping the measured parameters irrespective of the presence or absence of certain macrophyte species. In this situation, the relative strengths of all factors can be determined best in a study that explicitly accounts for differences in the identity of the waterbodies. Several functional macrophyte groups are known to provide a potent microinvertebrate refuge or permanent habitat. The objective of this study was to detect patterns in the zooplankton assemblages associated with different extensive habitats of macrophyte species and to relate these patterns to three major factors: the microhabitat, the pond identity and the seasonality in the warmer months of the year. Five ponds located in the Woluwe catchment of the Brussels-Capital Region (Belgium) were studied monthly for macrophyte and zooplankton characteristics from July until October 2005. The vegetation in the clear ponds was characterized by extensive monospecific stands (Ceratophyllum, Chara, Nitella, Potamogeton, Nuphar and filamentous algae). Zooplankton could be analysed in seven different vegetation types and in the open water zones and contained a total of 17 cladoceran and 27 rotifer genera. Principal components analysis (PCA) ordination of zooplankton communities showed a seasonal gradient and a tendency to group within-pond habitats, although they differed in macrophyte species and habitat structure. Despite the absence of clustering of similar microhabitats across ponds, percent volume infested (PVI), vegetation biomass density and Daphnia length (used as a proxy for fish predation pressure) contributed significantly positive to the Shannon zooplankton biodiversity indices. Moreover, densities of most zooplankton subgroups and of total zooplankton were significantly and positively related to PVI. It is assumed that in eutrophic ponds, extensive, often monospecific macrophyte vegetations provide an ecological environment suitable for both macrophyte-associated species and migrating pelagic zooplankton, thereby maintaining a high microinvertebrate biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balayla, D. J. & B. Moss, 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology 37: 417–435.

    Article  Google Scholar 

  • Barnett, A. & B. E. Beisner, 2007. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88: 1675–1686.

    Article  PubMed  Google Scholar 

  • Benndorf, J., W. Boing, J. Koop & I. Neubauer, 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295.

    Article  Google Scholar 

  • Bertolo, A., G. Lacroix, F. Lescher-Moutoue & S. Sala, 1999. Effects of physical refuges on fish–plankton interactions. Freshwater Biology 41: 795–808.

    Article  Google Scholar 

  • Blindow, I., A. Hargeby, B. M. A. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology 44: 185–197.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230–237.

    Article  Google Scholar 

  • Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  • Canfield, D. E., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida Lakes – importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41: 497–501.

    Article  CAS  Google Scholar 

  • Cao, Y., D. P. Larsen & R. S. Thorne, 2001. Rare species in multivariate analysis for bioassessment: some considerations. Journal of the North American Benthological Society 20: 144–153.

    Article  Google Scholar 

  • Cazzanelli, M., T. P. Warming & K. S. Christoffersen, 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113–122.

    Article  Google Scholar 

  • Cottenie, K., N. Nuytten, E. Michels & L. De Meester, 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339–350.

    Article  Google Scholar 

  • De Backer, S., S. Van Onsem & L. Triest, 2009. Influence of submerged vegetation and fish abundance on water clarity in peri-urban eutrophic ponds. Hydrobiologia. doi:10.1007/s10750-010-0444-z.

  • De Meester, L., S. Declerck & J. H. Hanse, 2006. Biodiversity in European shallow lakes: a multilevel-multifactorial field study. In Bobbink, R., B. Beltman, J. T. A. Verhoeven, D. F. Whigham, et al. (eds), Wetlands: Functioning, Biodiversity Conservation, and Restoration. Springer, Heidelberg.

    Google Scholar 

  • Declerck, S., M. Vanderstukken, A. Pals, K. Muylaert & L. De Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210.

    Article  CAS  PubMed  Google Scholar 

  • Downing, J. A., M. Perusse & Y. Frenette, 1987. Effect of interreplicate variance on zooplankton sampling design and data-analysis. Limnology and Oceanography 32: 673–680.

    Article  Google Scholar 

  • Drenner, S. M., S. I. Dodson, R. W. Drenner & J. E. Pinder, 2009. Crustacean zooplankton community structure in temporary and permanent grassland ponds. Hydrobiologia 632: 225–233.

    Article  Google Scholar 

  • Duggan, I. C., 2001. The ecology of periphytic rotifers. Hydrobiologia 446: 139–148.

    Article  Google Scholar 

  • Duggan, I. C., J. D. Green, K. Thompson & R. J. Shiel, 2001. The influence of macrophytes on the spatial distribution of littoral rotifers. Freshwater Biology 46: 777–786.

    Article  Google Scholar 

  • Gyllström, M. & L. A. Hansson, 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquatic Sciences 66: 274–295.

    Article  Google Scholar 

  • Hairston, N. G., A. M. Hansen & W. R. Schaffner, 2000. The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwater Biology 45: 133–145.

    Article  Google Scholar 

  • Hoffmann, M. D. & S. I. Dodson, 2005. Land use, primary productivity, and lake area as descriptors of zooplankton diversity. Ecology 86: 255–261.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology, Vol. II. Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons, New York.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Hensen, E. Mortensen, A.-M. Hansen & T. Jørgensen, 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year study of a shallow hypertrophic lake. Ecosystems 1: 250–267.

    Article  CAS  Google Scholar 

  • Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Article  Google Scholar 

  • Joniak, T., N. Kuczynska-Kippen & B. Nagengast, 2007. The role of aquatic macrophytes in microhabitatual transformation of physical-chemical features of small water bodies. Hydrobiologia 584: 101–109.

    Article  CAS  Google Scholar 

  • Kuczyńska-Kippen, N., 2005. On body size and habitat selection in rotifers in a macrophyte-dominated lake Budzynskie, Poland. Aquatic Ecology 39: 447–454.

    Article  Google Scholar 

  • Kuczyńska-Kippen, N. M. & B. Nagengast, 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203–212.

    Article  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Manatunge, J., T. Asaeda & T. Priyadarshana, 2000. The influence of structural complexity on fish–zooplankton interactions: a study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425–438.

    Article  Google Scholar 

  • McCollum, E. W., L. B. Crowder & S. A. McCollum, 1998. Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79: 1980–1994.

    Article  Google Scholar 

  • Michels, E., K. Cottenie, L. Neys & L. De Meester, 2001. Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia 442: 117–126.

    Article  Google Scholar 

  • Moss, B., R. Kornijow & G. J. Measey, 1998. The effects of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biology 39: 689–697.

    Article  Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, et al., 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation-Marine and Freshwater Ecosystems 13: 507–549.

    Article  Google Scholar 

  • Nurminen, L., J. Horppila & P. Tallberg, 2001. Seasonal development of the cladoceran assemblage in a turbid lake: the role of emergent macrophytes. Archiv Für Hydrobiologie 151: 127–140.

    Google Scholar 

  • Obertegger, U., G. Flaim, M. G. Braioni, R. Sommaruga, F. Corradini & A. Borsato, 2007. Water residence time as a driving force of zooplankton structure and succession. Aquatic Sciences 69: 575–583.

    Article  Google Scholar 

  • Olding, D. D., J. A. Hellebust & M. S. V. Douglas, 2000. Phytoplankton community composition in relation to water quality and water-body morphometry in urban lakes, reservoirs, and ponds. Canadian Journal of Fisheries and Aquatic Sciences 57: 2163–2174.

    Article  Google Scholar 

  • Peretyatko, A., J. J. Symoens & L. Triest, 2007a. Impact of macrophytes on phytoplankton in eutrophic peri-urban ponds, implications for pond management and restoration. Belgian Journal of Botany 140: 83–99.

    Google Scholar 

  • Peretyatko, A., S. Teissier, J. J. Symoens & L. Triest, 2007b. Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquatic Conservation-Marine and Freshwater Ecosystems 17: 584–601.

    Article  Google Scholar 

  • Peretyatko, A., S. Teissier, S. De Backer & L. Triest, 2009. Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia 634: 125–135.

    Article  Google Scholar 

  • Sagrario, G., M. de los Angeles, E. Balseiro, R. Ituarte & E. Spivak, 2009. Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biology 54: 1042–1053.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.

    Google Scholar 

  • Scheffer, M., 1999. The effect of aquatic vegetation on turbidity; how important are the filter feeders? Hydrobiologia 408: 307–316.

    Article  Google Scholar 

  • Scheffer, M. & S. Rinaldi, 2000. Minimal models of top-down control of phytoplankton. Freshwater Biology 45: 265–283.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  Google Scholar 

  • Smiley, E. A. & A. J. Tessier, 1998. Environmental gradients and the horizontal distribution of microcrustaceans in lakes. Freshwater Biology 39: 397–409.

    Article  Google Scholar 

  • Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342: 229–240.

    Article  Google Scholar 

  • Stenson, J. A. E., 1982. Fish impact on rotifer community structure. Hydrobiologia 87: 57–64.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO 4.5. Microcomputer Power, Ithaca, NY.

    Google Scholar 

  • Van de Meutter, F., R. Stoks & L. De Meester, 2005a. Spatial avoidance of littoral and pelagic invertebrate predators by Daphnia. Oecologia 142: 489–499.

    Article  PubMed  Google Scholar 

  • Van de Meutter, F., R. Stoks & L. De Meester, 2005b. The effect of turbidity state and microhabitat on macroinvertebrate assemblages: a pilot study of six shallow lakes. Hydrobiologia 542: 379–390.

    Google Scholar 

  • Van den Berg, M. S., M. Scheffer, E. Van Nes & H. Coops, 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408: 335–342.

    Article  Google Scholar 

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Article  Google Scholar 

  • van Katwijk, M. M. & C. J. F. ter Braak, 2003. Handleiding voor het gebruik van multivariate analysetechnieken in de ecologie. Ecoscience, Universiteit Nijmegen.

Download references

Acknowledgments

The authors would like to thank everybody who helped during fieldwork, microscope analyses and data treatment for their contribution. We are grateful to Anatoly Peretyatko for his help with the multivariate analysis and the sharing of ideas.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stijn Van Onsem or Ludwig Triest.

Additional information

Guest editors: A. Pieterse, S. Hellsten, J. Newman, J. Caffrey, F. Ecke, T. Ferreira, B. Gopal, J. Haury, G. Janauer, T. Kairesalo, A. Kanninen, K. Karttunen, J. Sarvala, K. Szoszkiewicz, H. Toivonen, L. Triest, P. Uotila, N. Willby / Aquatic Invasions and Relation to Environmental Changes: Proceedings of the 12th International Symposium on Aquatic Weeds, European Weed Research Society

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Onsem, S., De Backer, S. & Triest, L. Microhabitat–zooplankton relationship in extensive macrophyte vegetations of eutrophic clear-water ponds. Hydrobiologia 656, 67–81 (2010). https://doi.org/10.1007/s10750-010-0442-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0442-1

Keywords

Navigation