Skip to main content
Log in

Strength of phytoplankton–nutrient relationship: evidence from 13 biomanipulated ponds

  • POND RESEARCH AND MANAGEMENT
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton biomass–nutrient relationship is widely used by lake managers to assess the eutrophication impact and to set the nutrient targets. Submerged vegetation and large zooplankton grazing have long been identified as factors weakening the relationship by decoupling phytoplankton from nutrients. Proving this decoupling unambiguously is difficult because, in natural systems, many factors act together, blurring each other’s effect. In this article, we present the results of continuous monitoring of 13 ponds where the effects of submerged vegetation and zooplankton grazing were enhanced by biomanipulation (fish removal). The monitoring allowed these effects to be assessed and compared with the pre-biomanipulation situations when phytoplankton biomass was mainly nutrient driven. The comparison showed a strong weakening effect of submerged vegetation and large zooplankton grazing on the chlorophyll a–total phosphorus relationship suggesting that a considerable degree of ecological quality of ponds affected by eutrophication can be restored even when nutrient-loading reduction is not feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA-AWWA-WEF, 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Benndorf, J., B. Wissel, A. F. Sell, U. Hornig, P. Ritter & W. Böing, 2000. Food web manipulation by extreme enhancement of piscivory: an invertebrate predator compensates for the effects of planktivorous fish on a plankton community. Limnologica – Ecology and Management of Inland Waters 30: 235–245.

    Article  Google Scholar 

  • Benndorf, J., W. Boing, J. Koop & I. Neubauer, 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295.

    Article  Google Scholar 

  • Brabrand, A., B. A. Faafeng & J. P. M. Nilssen, 1990. Relative importance of phosphorus supply to phytoplankton production – fish excretion versus external loading. Canadian Journal of Fisheries and Aquatic Sciences 47: 364–372.

    Article  Google Scholar 

  • Breukelaar, A. W., E. Lammens, J. Breteler & I. Tatrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll-a. Freshwater Biology 32: 113–121.

    Article  Google Scholar 

  • Bronmark, C. & L.-A. Hansson, 2005. The Biology of Lakes and Ponds. Oxford University Press, Oxford.

    Google Scholar 

  • Burns, C. W., 1968. Relationship between body size of filter-feeding Cladocera and maximum size of particle ingested. Limnology and Oceanography 13: 675–678.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1992. Trophic cascade and biomanipulation – interface of research and management – Reply. Limnology and Oceanography 37: 208–213.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.

    Article  Google Scholar 

  • Cottingham, K. L. & D. E. Schindler, 2000. Effects of grazer community structure on phytoplankton response to nutrient pulses. Ecology 81: 183–200.

    Article  Google Scholar 

  • DeMelo, R., R. France & D. J. McQueen, 1992. Biomanipulation – hit or myth. Limnology and Oceanography 37: 192–207.

    Article  Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. Phosphorus–chlorophyll relationship in lakes. Limnology and Oceanography 19: 767–773.

    Article  CAS  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2003. Eutrophication and restoration of shallow lakes – the concept of stable equilibria revisited. Hydrobiologia 506: 29–35.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990a. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990b. Why do cladocerans fail to control algal blooms? Hydrobiologia 200: 83–97.

    Article  Google Scholar 

  • Gragnani, A., M. Scheffer & S. Rinaldi, 1999. Top-down control of cyanobacteria: a theoretical analysis. American Naturalist 153: 59–72.

    Article  Google Scholar 

  • Hansson, L. A. & S. R. Carpenter, 1993. Relative importance of nutrient availability and food-chain for size and community composition in phytoplankton. Oikos 67: 257–263.

    Article  Google Scholar 

  • Hosper, H. & M. L. Meijer, 1993. Biomanipulation, will it work for your lake – a simple test for the assessment of chances for clear water, following drastic fish-stock reduction in shallow, eutrophic lakes. Ecological Engineering 2: 63–72.

    Article  Google Scholar 

  • Hudnell, H. K., 2008. Cyanobacterial Harmful Algal Blooms – State of the Science and Research Needs. Springer Science, New York.

    Book  Google Scholar 

  • Irfanullah, H. M. & B. Moss, 2005. A filamentous green algae-dominated temperate shallow lake: variations on the theme of clearwater stable states? Archiv Fur Hydrobiologie 163: 25–47.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., M. Sondergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. O. B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. A. N. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. O. B. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. V. A. Willen & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Lammens, E., 1999. The central role of fish in lake restoration and management. Hydrobiologia 396: 191–198.

    Article  Google Scholar 

  • Lammens, E., R. D. Gulati, M. L. Meijer & E. Vandonk, 1990. The 1st biomanipulation conference – a synthesis. Hydrobiologia 200: 619–627.

    Article  Google Scholar 

  • Mazumder, A., 1994. Phosphorus chlorophyll relationships under contrasting herbivory and thermal stratification – predictions and patterns. Canadian Journal of Fisheries and Aquatic Sciences 51: 390–400.

    Article  CAS  Google Scholar 

  • Mazumder, A. & K. E. Havens, 1998. Nutrient–chlorophyll–Secchi relationships under contrasting grazer communities of temperate versus subtropical lakes. Canadian Journal of Fisheries and Aquatic Sciences 55: 1652–1662.

    Article  CAS  Google Scholar 

  • Meijer, M. L., I. de Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 408: 13–30.

    Article  Google Scholar 

  • Moss, B., J. Stansfield, K. Irvine, M. Perrow & G. Phillips, 1996. Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. Journal of Applied Ecology 33: 71–86.

    Article  Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernandez-Alaez, M. Fernandez-Alaez, R. J. M. Franken, F. Garcia-Criado, E. M. Gross, M. Gyllstrom, L. A. Hansson, K. Irvine, A. Jarvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Kunnap, A. Laas, E. Lille, B. Lorens, H. Luup, M. R. Miracle, P. Noges, T. Noges, M. Nykanen, I. Ott, W. Peczula, E. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujoe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 507–549.

    Article  Google Scholar 

  • Paerl, H. W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography 33: 823–847.

    Article  CAS  Google Scholar 

  • Peretyatko, A., S. Teissier, S. De Backer & L. Triest, 2011. Biomanipulation of hypereutrophic ponds: when it works and why it fails. Environmental Monitoring and Assessment. doi:10.1007/s10661-011-2057-z.

  • Peretyatko, A., J.-J. Symoens & L. Triest, 2007a. Impact of macrophytes on phytoplankton in eutrophic peri-urban ponds, implications for pond management and restoration. Belgian Journal of Botany 140: 83–99.

    Google Scholar 

  • Peretyatko, A., S. Teissier, J.-J. Symoens & L. Triest, 2007b. Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 584–601.

    Article  Google Scholar 

  • Peretyatko, A., S. Teissier, S. De Backer & L. Triest, 2009. Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia 634: 125–135.

    Article  Google Scholar 

  • Peretyatko, A., S. Teissier, S. De Backer & L. Triest, 2010. Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach. Annales De Limnologie – International Journal of Limnology 46: 121–133.

    Article  Google Scholar 

  • Perrow, M. R., M. L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in the shallow lakes: state of the art. Hydrobiologia 342: 355–365.

    Article  Google Scholar 

  • Phillips, G., O. P. Pietilainen, L. Carvalho, A. Solimini, A. L. Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.

    Article  CAS  Google Scholar 

  • Pinel-Alloul, B., 1995. Impacts des prédateurs invertébrés sur les communautés aquatiques. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson, Paris: 628–686.

    Google Scholar 

  • Pourriot, R., 1995. Réponses adaptatives du zooplancton à la prédation. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson, Paris: 610–627.

    Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369: 11–26.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Sarnelle, O., 1992. Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73: 551–560.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase – making it stable. Hydrobiologia 200–201: 13–27.

    Article  Google Scholar 

  • Sierp, M. T., J. G. Qin & F. Recknagel, 2009. Biomanipulation: a review of biological control measures in eutrophic waters and the potential for Murray cod Maccullochella peelii peelii to promote water quality in temperate Australia. Reviews in Fish Biology and Fisheries 19: 143–165.

    Article  Google Scholar 

  • Sondergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppessen, E., M. Sondergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 115–133.

    Chapter  Google Scholar 

  • Sondergaard, M., J. P. Jensen & E. Jeppesen, 2005a. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology 50: 1605–1615.

    Article  Google Scholar 

  • Sondergaard, M., E. Jeppesen & J. P. Jensen, 2005b. Pond or lake: does it make any difference? Archiv Fur Hydrobiologie 162: 143–165.

    Article  CAS  Google Scholar 

  • Steiner, C. F., 2002. Context-dependent effects of Daphnia pulex on pond ecosystem function: observational and experimental evidence. Oecologia 131: 549–558.

    Article  Google Scholar 

  • Sterner, R. W., J. J. Elser & D. O. Hessen, 1992. Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochemistry 17: 49–67.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme, 2003. Planning and Management of Lakes and Reservoirs: An Integrated Approach to Eutrophication. UNEP Newsletter.

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Article  Google Scholar 

  • Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Prospective Research for Brussels (2003–2006), the Research in Brussels (2006), the Belgian Science Policy (project BBlooms 2: Cyanobacterial blooms: toxicity, diversity, modelling and management, contract SD/TE/01A) and Brussels Institute of Environment (BIM/IBGE). We thank the two anonymous reviewers for their valuable comments that helped us improve the manuscript substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Teissier.

Additional information

Guest editors: D. Boix, B. Oertli, R. Céréghino, T. Kalettka, J. Biggs & A. P. Hull / Pond Research and Management in Europe – Proceedings of the 4th conference of the European Pond Conservation Network (Berlin 2010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teissier, S., Peretyatko, A., De Backer, S. et al. Strength of phytoplankton–nutrient relationship: evidence from 13 biomanipulated ponds. Hydrobiologia 689, 147–159 (2012). https://doi.org/10.1007/s10750-011-0726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0726-0

Keywords

Navigation