Skip to main content
Log in

Spatial distribution of subfossil Chironomidae in surface sediments of a large, shallow and hypertrophic lake (Taihu, SE China)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spatial heterogeneity of benthic communities has clear implications for estimating lake production, biodiversity as well as identifying representative sites for palaeolimnological studies. This study investigates chironomid variability and the controlling factors (i.e., environmental and spatial variables) in surface sediments from Taihu Lake (2,338 km2), a hypertrophic lake in the Yangtze delta in eastern China. The spatial distribution of chironomids shows distinct heterogeneity. Microchironomus tabarui-type and Tanypus dominate the midge communities around the estuaries, while Cricotopus sylvestris-type and Polypedilum nubifer-type are the predominant taxa in the East Bays and the East Taihu Lake. Redundancy analysis was used for exploring the relationships between chironomid variability and environmental and spatial stressors. Four variables were identified as significant factors that influence chironomid community structures. The high nutrient concentrations around the estuarial areas favor the development of nutrient-tolerant taxa. Water depth-related oxygen depletion in the open lake during algae blooms prohibits the survival of many organisms, except for a few hypoxic-resistant species. High transparency in the East Bays and the East Taihu Lake indirectly creates a favorite microhabitat for macrophyte-associated chironomid species through aquatic plants. Space per se is a significant forcing factor for organism community and distribution at scales of >1,000 km2. It might be important to consider spatial variables more explicitly in future studies of chironomids in large lakes where multiple stressors make the interactions within the ecosystem more complicated. This study aims to illustrate the ecological characteristics of specific chironomid taxa related to a “microecosystem” which is contributed by the multiple environmental gradients within a large lake, and to provide empirical support for interpretation of palaeochironomid data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berg, C. O., 1950. Biology of certain Chironomidae reared from Potamogeton. Ecological Monographs 20: 83–101.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2004. SpaceMaker2 – user’s guide. Département de sciences biologiques, Université de Montréal.

  • Brodersen, K. P., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology 46: 253–267.

    Article  Google Scholar 

  • Brooks, S. J., H. Bennion & H. J. B. Birks, 2001. Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshwater Biology 46: 513–533.

    Article  CAS  Google Scholar 

  • Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10, Quaternary Research Association, London.

  • Cai, Y. J., Z. J. Gong & B. Q. Qin, 2010. Community structure and diversity of macrozoobenthos in Lake Taihu, a large shallow eutrophic lake in China. Biodiversity Science 18: 50–59. (abstract in English).

    Google Scholar 

  • Eggermont, H., P. D. Deyne & D. Verschuren, 2007. Spatial variability of chironomid death assemblages in the surface sediments of a fluctuating tropical lake (Lake Naivasha, Kenya). Journal of Paleolimnology 38: 309–328.

    Article  Google Scholar 

  • Engels, S. & L. C. Cwynar, 2011. Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665: 15–38.

    Article  CAS  Google Scholar 

  • Fortin, M. J. & M. R. T. Dale, 2005. Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans, and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.

    Google Scholar 

  • Gong, Z. J., P. Xie, H. J. Tang & S. D. Wang, 2001. The influence of eutrophication upon community structure and biodiversity of macrozoobenthos. Acta Hydrobiologica Sinica 25: 210–216. (abstract in English).

    CAS  Google Scholar 

  • Grodhaus, G., 1963. Chironomid midges as a nuisance II, the nature of the nuisance and remarks on its control. California Vetor Views 10: 27–37.

    Google Scholar 

  • Gu, X. H., S. Z. Zhang, X. L. Bai, W. P. Hu, Y. H. Hu & X. R. Wang, 2005. Evolution of community structure of aquatic macrophytes in East Taihu Lake and its wetlands. Acta Ecologica Sinica 25: 1541–1548. (abstract in English).

    Google Scholar 

  • Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit & J. P. Smol, 1999. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnology and Oceanography 44: 739–756.

    Article  CAS  Google Scholar 

  • Jin, X. C. & Q. Y. Tu, 1990. The Standard Methods for Observation and Analysis of Lake Eutrophication, 2nd ed. China Environmental Science Press, Beijing. (in Chinese).

    Google Scholar 

  • Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.

    Article  Google Scholar 

  • Korhola, A., H. Olander & T. Blom, 2000. Cladocera and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.

    Article  Google Scholar 

  • Langdon, P. G., Z. Ruiz, K. P. Brodensen & I. D. L. Foster, 2006. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biology 51: 562–577.

    Article  CAS  Google Scholar 

  • Langdon, P. G., Z. Ruiz, S. Wynne, C. D. Sayer & T. A. Davidson, 2010. Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshwater Biology 55: 531–545.

    Article  CAS  Google Scholar 

  • Larocque, I., 2001. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 133–142.

    Article  Google Scholar 

  • Larocque, I., R. Pienitz & N. Rolland, 2006. Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Canadian Journal of Fisheries and Aquatic Science 63: 1286–1297.

    Article  Google Scholar 

  • Legendre, P., 1993. Spatial autocorrelation: trouble or new paradigm. Ecology 74: 1956–1973.

    Article  Google Scholar 

  • Little, J. L. & J. P. Smol, 2000. Changes in fossil midge (Chironomidae) assemblages in response to cultural activities in a shallow, polymictic lake. Journal of Paleolimnology 23: 207–212.

    Article  Google Scholar 

  • McCullagh, P. & J. A. Nelder, 1989. Generalized Linear Models. Chapman and Hall, London.

    Google Scholar 

  • Mehner, T., F. Holker & P. Kasprzak, 2005. Spatial and temporal heterogeneity of trophic variables in a deep lake as reflected by repeated singular samplings. Oikos 108: 401–409.

    Article  Google Scholar 

  • Middelboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.

    Article  Google Scholar 

  • Oertli, B. & J. Lachavanne, 1995. The effects of shoot age on colonization of an emergent macrophyte (Typha latifolia) by macroinvertebrates. Freshwater Biology 34: 421–431.

    Article  Google Scholar 

  • Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Diptera) distribution along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. Journal of Paleolimnology 18: 45–59.

    Article  Google Scholar 

  • Oliver, D. R. & M. E. Roussel, 1983. The Insects and Arachnids of Canada. Part II: The Genera of Larval Midges of Canada. Diptera: Chironomidae. Agriculture Canada Publication 1746: 263.

  • Qin, B. Q., 2008. Lake Taihu, China: Dynamics and Environmental Changes. Springer, Dordrecht.

    Book  Google Scholar 

  • Qin, B. Q., W. P. Hu & W. M. Chen, 2004. The Processes and Mechanism of Lake Taihu Environmental. Science Press, Beijing. (in Chinese).

    Google Scholar 

  • Qin, B. Q., G. W. Zhu, G. Gao, Y. L. Zhang, W. Li, H. W. Paerl & W. W. Carmichael, 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environmental Management 45: 105–112.

    Article  PubMed  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology 46: 1529–1551.

    Article  CAS  Google Scholar 

  • Quinlan, R., A. M. Paterson, R. I. Hall, P. J. Dillon, A. N. Wilkinson, B. F. Cumming, M. S. V. Douglas & J. P. Smol, 2003. A landscape approach to examining spatial patterns of limnological variables and long-term environmental change in a southern Canadian lake district. Freshwater Biology 48: 1676–1697.

    Article  Google Scholar 

  • Rieradevall, M. & S. J. Brooks, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25: 81–99.

    Article  Google Scholar 

  • Ruiz, Z., A. G. Brown & P. G. Langdon, 2006. The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. Journal of Archaeological Science 33: 14–33.

    Article  Google Scholar 

  • Smock, L. A. & D. L. Stoneburner, 1980. The response of macroinvertebrates to aquatic macrophyte decomposition. Oikos 35: 397–403.

    Article  Google Scholar 

  • Sun, S. C. & Y. P. Huang, 1993. Taihu Lake. China Ocean Press, Beijing. (in Chinese).

    Google Scholar 

  • Sweetman, J. & J. Smol, 2006. Patterns in the distribution of cladocerans (Crustacea, Branchiopoda) in lakes across a north-south transect in Alaska, USA. Hydrobiologia 553: 277–291.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca.

  • Tilman, D. & P. Kareiva, 1997. The role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton.

    Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.

    Article  Google Scholar 

  • Walker, I. R., C. H. Fernando & C. G. Paterson, 1984. The chironomid fauna of four shallow, humic lakes and their representation by subfossil assemblages in the surficial sediments. Hydrobiologia 112: 61–67.

    Article  Google Scholar 

  • Weatherhead, M. A. & M. R. James, 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of nine New Zealand lakes. Hydrobiologia 462: 115–129.

    Article  Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic Region. Keys and diagnoses. Part I. Larvae. Entomologica Scandinavica Supplement: 457.

  • Wiederholm, T. & L. Eriksson, 1979. Subfossil chironomids as evidence of eutrophication in Ekoln Bay, central Sweden. Hydrobiologia 62: 195–208.

    Article  CAS  Google Scholar 

  • Xiong, F., W. C. Li & J. Z. Pan, 2007. Spatial distribution of chironomid larvae and its environmental analysis in Lake Fuxian, Yunnan Province. Chinese Journal of Applied Ecology 18: 179–184. (abstract in English).

    PubMed  Google Scholar 

  • Xu, P. Z. & B. Q. Qin, 2005. Water quantity and pollutant fluxes of the surrounding rivers of Lake Taihu during the hydrological year of 2001–2002. Journal of Lake Sciences 17: 213–218. (abstract in English).

    CAS  Google Scholar 

  • Yang, H., R. J. Flower & R. W. Battarbee, 2009. Influence of environmental and spatial variables on the distribution of surface sediment diatoms in an upland loch, Scotland. Acta Botanica Croatica 68: 367–380.

    Google Scholar 

  • Yang, X. D., N. J. Anderson, X. H. Dong & J. Shen, 2008. Surface sediment diatom assemblages and epilimnetic total phosphrous in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshwater Biology 53: 1273–1290.

    Article  CAS  Google Scholar 

  • Zhang, E. L., A. Bedford, R. Jones, J. Shen, S. M. Wang & H. Q. Tang, 2006. A subfossil chironomid-total phosphorus inference model for lakes in the middle and lower reaches of Yangtze River. Chinese Science Bulletin 51: 2125–2132.

    Article  CAS  Google Scholar 

  • Zhao, L. L., M. Y. Zhu, L. Q. Feng, X. H. Liu, G. W. Zhu, Y. F. Chen & B. Q. Qin, 2011. Stratification and its driving factors of water physicochemical variables in large, shallow Lake Taihu. Journal of Lake Sciences 23: 649–656. (abstract in English).

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (No: 2008CB418103, 2012CB956100), the Knowledge Innovation Program of the Chinese Academy of Sciences (kzcx2-yw-319) and National Natural Science Foundation of China (41072267). We thank Dr. Yunlin Zhang and Dr. Xuhui Dong for their help on the preparation of this manuscript, and two anonymous referees for comments which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enlou Zhang.

Additional information

Handling editor: Jasmine Saros

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Zhang, E., Chen, X. et al. Spatial distribution of subfossil Chironomidae in surface sediments of a large, shallow and hypertrophic lake (Taihu, SE China). Hydrobiologia 691, 59–70 (2012). https://doi.org/10.1007/s10750-012-1030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1030-3

Keywords

Navigation