Skip to main content
Log in

Morphological variability of Arthrospira (Spirulina) fusiformis (Cyanophyta) in relation to environmental variables in the tropical soda lake Chitu, Ethiopia

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although variability of Arthrospira morphology, widely used in taxonomy and other valuable aspects, as a response to changes in environmental variables has been studied in laboratory cultures, little is known about such responses in the natural habitats. In this study, Arthrospira fusiformis was characterized morphologically in relation to selected environmental variables in the natural ecosystem. Three distinct morphotypes, tightly coiled (H-type), spiral or loosely coiled (S-type), and intermediately coiled (C-type) were observed and described. They varied largely in the degree of coiling, trichome and helix dimensions, coils, shape of trichome end and trichome abundance. The H-type was the most dominant (50%) followed by the S-type (40%). The dominance of H-type and tightening of helix pitch were strongly associated with NO3 and HCO3 deficiencies, and high levels of photosynthetically active radiation (PAR) and temperature of the lake. The abundance of S-type was more strongly but negatively related to the high salinity of the lake, probably indicating that decreasing salinity may favor the S-type. In conclusion, the variability in abundance and morphology seem to suggest that A. fusiformis could show morphological modifications in response to environmental stresses in their natural soda lakes, resulting in occurrence of various morphotypes of the same species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Public Health Association (APHA), 1995. Standard Methods, 19th ed. APHA, Washington, DC.

    Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF), 1999. Standard Methods for the Examination of Water and Waste Water, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Bai, J. N., 1985. Competitive exclusion or morphological transformation? A case study with Spirulina fusiformis. Archiv für Hydrobiologie Supplement 71: 191–199.

    Google Scholar 

  • Bai, J. N. & V. C. Seshadri, 1980. On coiling and uncoiling of trichomes in the genus Spirulina. Archiv für Hydrobiologie 60: 32–47.

    Google Scholar 

  • Ballot, A., P. K. Dadheech & L. Krienitz, 2004. Phylogenetic relationship of Arthrospira, Phormidium and Spirulina strains from Kenyan and Indian water bodies. Algological Studies 113: 37–56.

    Article  Google Scholar 

  • Belay, A., 1997. Mass culture of Spirulina outdoors—the earthrise farms experience. In Vonshak, A. (ed.), Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis, London: 131–158.

    Google Scholar 

  • Belay, A., 2008. Spirulina (Arthrospira): production and quality assurance. In Gershwin, M. E. & A. Belay (eds), Spirulina in Human Nutrition and Health. CRC Press, Boca Raton: 1–26.

    Google Scholar 

  • Belay, A. & Y. Ota, 1993. Current knowledge on potential health benefits of Spirulina. Journal of Applied Physiology 5: 235–241.

    Google Scholar 

  • Belay, A., T. Kato & Y. Ota, 1996. Spirulina (Arthrospira): potential application as an animal feed supplement. Journal of Applied Phycology 8: 303–311.

    Article  Google Scholar 

  • Binaghi, L., A. D. Borghi, A. Lodi, A. Converti & M. D. Borghi, 2003. Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochemistry 38: 1341–1346.

    Article  CAS  Google Scholar 

  • Chen, F., Y. Zhang & S. Guo, 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letter 18: 603–608.

    Article  CAS  Google Scholar 

  • Dadheech, P. K., A. Ballot, P. Casper, K. Kotut, E. Novelo, B. Lemma, T. Pröschold & L. Krienitz, 2010. Phylogenetic relationship and divergence among planktonic strains of Arthrospira (Cyanobacteria) of African, Asian and American origin deduced by 16S–23S ITS and phycocyanin operon sequences. Phycologia 49: 361–372.

    Article  CAS  Google Scholar 

  • Desikachary, T. V. & N. J. Bai, 1996. Taxonomic studies in Spirulina. II. The identification of Arthrospira (Spirulina) strains and natural samples of different geographical regions. Algological Studies 83: 163–178.

    Google Scholar 

  • Dhiab, R. B., H. B. Ouada, H. Boussetta, F. Franck, A. Elabed & M. Brouers, 2007. Growth, fluorescence, photosynthetic O2 production and pigment content of salt adapted cultures of Arthrospira (Spirulina) platensis. Journal of Applied Phycology 19: 293–301.

    Article  Google Scholar 

  • Fox, R. D., 1996. Spirulina: Production and Potential. Edisud, Aix en Provence, France: 231 pp.

    Google Scholar 

  • Hindák, F., 1985. Morphology of trichomes in Spirulina fusiformis Voronichin from Lake Bogoria, Kenya. Archiv für Hydrobiologie 38/39: 201–218.

    Google Scholar 

  • Hoffmann, L., J. Komárek & J. Kastovsky, 2004. System of cyanoprokaryotes (cyanobacteria) state. Algological Studies 117: 95–115.

    Article  Google Scholar 

  • Hotzel, G. & R. Croome, 1999. A Phytoplankton Counting Methods Manual for Australian Freshwaters. Land and Water Resource Research Development Corporation, Canberra: 51 pp.

    Google Scholar 

  • Jenkin, P. M., 1957. The filter feeding and food of flamingos (Phoenicopteri). Philosophical Transactions of Royal Society of London Series B 240: 401–493.

    Article  Google Scholar 

  • Kaggwa, M. N., A. Burian, S. M. Oduor & M. Schagerl, 2013. Ecomorphological variability of Arthrospira fusiformis (Cyanoprokaryota) in African soda lakes. Microbiology Open 2: 881–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebede, E., 1997. Response of Spirulina platensis (Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts. Journal of Applied Phycology 9: 551–558.

    CAS  Google Scholar 

  • Kebede, E., Z. Gebre-Mariam & I. Ahlgren, 1994. The Ethiopian Rift Valley lakes: chemical characteristics of a salinity–alkalinity series. Hydrobiologia 288: 1–12.

    Article  CAS  Google Scholar 

  • Kim, C. J., Y. H. Jung & H. M. Oh, 2007. Factors indicating culture status during cultivation of Spirulina (Arthrospira) platensis. Journal of Microbiology 45: 122–127.

    CAS  Google Scholar 

  • Klemper, S. L. & M. D. Cash, 2007. Temporal geochemical variation in Ethiopian Lakes Shala, Arenguade, Awasa, and Beseka: possible environmental impacts from underwater and borehole detonations. Journal of African Earth Science 48: 174–198.

    Article  Google Scholar 

  • Komárek, J. & J. W. G. Lund, 1990. What is ‘Spirulina platensis’ in fact? Algological Studies 58: 1–13.

    Google Scholar 

  • Krienitz, L. & K. Kotut, 2010. Fluctuating algal food populations and the occurrence of Lesser Flamingos (Phoeniconaias minor) in three Kenyan rift valley lakes. Journal of Phycology 46: 1088–1096.

    Article  Google Scholar 

  • Krienitz, L., P. K. Dadheech & K. Kotut, 2013. Mass development of a small sized ecotype of Arthrospira fusiformis in Lake Oloidien, Kenya, a new feeding ground for Lesser Flamingos in East Africa. Fottea 13: 215–225.

    Google Scholar 

  • Legesse, D., F. Gasse, O. Radakovitch, C. Vallet-Coulomb, R. Bonnefille, D. Verschuren, E. Gibert & P. Barker, 2002. Environmental changes in a tropical lake (Lake Abiyata; Ethiopia) during recent centuries. Palaeogeography Palaeoclimatology Palaeoecology 187: 233–258.

    Article  Google Scholar 

  • Leps, J. & P. Smilauer, 2003. Multivariate Analysis of Ecological Data Using Canoco. Cambridge Univ. Press, Cambridge: 283 pp.

    Book  Google Scholar 

  • Lewin, R. A., 1980. Uncoiled variants of Spirulina platensis (Cyanophyceae). Algological Studies 26: 48–52.

    Google Scholar 

  • Li, P. & K. Gao, 2008. Effects of solar UV and visible radiations on the spiral structure and orientation of Arthrospira platensis (Cyanophyta). Phycologia 47: 573–579.

    Article  Google Scholar 

  • Li, R. H., H. J. Debella & W. W. Carmichael, 2001. Isolates identifiable as Arthrospira maxima and Arthrospira fusiformis (Cyanobacteria) appear identical on the basis of a morphological study in culture and 16S rRNA gene sequences. Phycologia 40: 367–371.

    Article  Google Scholar 

  • Ma, Z. & K. Gao, 2009. Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira (Spirulina) platensis. Planta 230: 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Muhling, M., P. J. Somerfield, N. Harris, A. Belay & B. A. Whitton, 2006. Phenotypic analysis of Arthrospira (Spirulina) strains (Cyanobacteria). Phycologia 45: 148–157.

    Article  Google Scholar 

  • Mussagy, A., H. Annadotter & G. Cronberg, 2006. The cyanophyte Arthrospira fusiformis from Mozambique, Africa: morphological and molecular characterization. Algological Studies 121: 59–73.

    Article  Google Scholar 

  • Nelissen, B., A. Wilmotte, J. M. Neefs & R. De Wachter, 1994. Phylogenetic relationships among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal-RNA gene sequence analysis. Systematic and Applied Microbiology 17: 206–210.

    Article  CAS  Google Scholar 

  • Ogato, T., D. Kifle, T. Fetahi & B. Sitotaw, 2014. Evaluation of growth and biomass production of Arthrospira (Spirulina) fusiformis in laboratory cultures using waters from the Ethiopian soda lakes Chitu and Shala. Journal of Applied Phycolology. doi:10.1007/s10811-014-0251-4.

  • Oren, A., 2004. A proposal for further integration of the cyanobacteria under the bacteriological code. International Journal of Systematic and Evolutionary Microbiology 54: 1895–1902.

    Article  PubMed  Google Scholar 

  • Raven, J. A. & J. E. Kubler, 2002. New light on the scaling of metabolic rate with the size of algae. Journal of Phycology 38: 11–16.

    Article  Google Scholar 

  • Richmond, A., 1990. Large scale microalgal culture and applications. In Round, F. E. & D. J. Champman (eds), Progress in Phycological Research. Biopress, Bristol: 269–330.

    Google Scholar 

  • Talling, J. F. & J. Lemoalle, 1998. Ecological Dynamics of Tropical Inland Waters. Cambridge University Press, Cambridge: 441 pp.

    Google Scholar 

  • Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake waters. Internationale Revue der gesamten Hydrobiologie 50: 421–463.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows. Microcomputer Power, Ithaca: 352 pp.

    Google Scholar 

  • Thomasson, K., 1960. Ett fall av tropisk vattenblomning. Botaniska Notiser 113: 592–601.

    Google Scholar 

  • Tomaselli, L., 1997. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In Vonshak, A. (ed.), Spirulina platensis (Arthrospra): Physiology, Cell Biology and Biotechnology. Taylor and Francis, London: 1–15.

    Google Scholar 

  • Turner, S., 1997. Molecular systematics of oxygenic photosynthetic bacteria. Plant Systematics and Evolution Supplement 11: 13–52.

    Article  CAS  Google Scholar 

  • UNESCO, 1983. Algorithms for computation of fundamental properties of seawater. UNESCO technical papers in marine science no. 44, 58 pp.

  • Van Eykelenburg, C., 1979. The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie Van Leeuwenhoek 45: 369–390.

    Article  PubMed  Google Scholar 

  • Vareschi, E., 1978. The ecology of Lake Nakuru (Kenya): I. Abundance and feeding of the lesser flamingo. Oecologia 32: 11–35.

    Article  Google Scholar 

  • Vareschi, E., 1982. The ecology of Lake Nakuru (Kenya): III. Abiotic factors and primary production. Oecologia 55: 81–101.

    Article  Google Scholar 

  • Vonshak, A., 1997. Outdoor mass production of Spirulina: the basic concept. In Vonshak, A. (ed.), Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor and Francis, London: 79–99.

    Google Scholar 

  • Vonshak, A. & L. Tomaselli, 2000. Arthrospira (Spirulina): systematics and ecophysiology. In Whitton, B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer, Dordrecht, the Netherlands: 505–522.

    Google Scholar 

  • Vonshak, A., R. Guy & M. Guy, 1988. The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Archives of Microbiology 150: 417–420.

    Article  Google Scholar 

  • Wang, Z. P. & Y. Zhao, 2005. Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): from linear to helical. Journal of Phycology 41: 622–628.

    Article  Google Scholar 

  • Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.

    Article  CAS  Google Scholar 

  • Wu, H., K. Gao, V. Villafane, T. Watanabe & E. W. Helbling, 2005. Effects of solar UV radiation on morphology and photosynthesis of the filamentous cyanobacterium Arthrospira platensis. Applied and Environmental Microbiology 71: 5004–5013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was carried out with the financial and logistical support offered by Graduate Studies Program and Thematic Research Project (Ziway-Shala Basin Sub-thematic Research Group) of Addis Ababa University. We thank Ethiopian Wildlife Conservation Authority (EWCA) and Abijata-Shala Lakes National Park Administration for granting permission to research in Lake Chitu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadesse Ogato.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogato, T., Kifle, D. Morphological variability of Arthrospira (Spirulina) fusiformis (Cyanophyta) in relation to environmental variables in the tropical soda lake Chitu, Ethiopia. Hydrobiologia 738, 21–33 (2014). https://doi.org/10.1007/s10750-014-1912-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1912-7

Keywords

Navigation