Skip to main content
Log in

Growth and stress responses of Nuttall’s waterweed Elodea nuttallii (Planch) St. John to water movements

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding the interactions between aquatic plants and environmental factors is important to clarify aquatic ecosystem functioning. The mechanisms governing the interactions between water flow and plants are not yet fully understood, and the responses of plants to main flow (without turbulence) compared to turbulence are largely unknown. Here, we compared the growth and stress responses of the aquatic macrophyte Elodea nuttallii to exposure to turbulence and main flow. Turbulence and main flow were generated using a vertically oscillating horizontal grid and a recirculating system, respectively and the experiment lasted for 3 weeks. A decrease in shoot elongation coupled with an increase in radial expansion was observed in plants exposed to water movements. These effects were further accompanied by significant increases in cellulose and lignin. Turbulence reduced total chlorophyll by approximately 40% compared to plants in the control and main flow. Mechanical stress induced by turbulence leads to increased oxidative stress and tissue rigidification. The turbulence triggered stress in E. nuttallii is more severe than that induced by main flow. Our findings can offer insights for explaining the habitat preferences of macrophytes and contribute to a better planning of the criteria that benefit in aquatic ecosystem management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi, H., 1984. Catalase in vitro. In Lester, P. (ed.), Methods in Enzymology, Vol. 105. Academic Press, New York: 121–126.

    Google Scholar 

  • Apel, K. & H. Hirt, 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Asaeda, T., T. Fujino & J. Manatunge, 2005. Morphological adaptations of emergent plants to water flow: a case study with Typha angustifolia, Zizania latifolia and Phragmites australis. Freshwater Biology 50: 1991–2001.

    Article  Google Scholar 

  • Asaeda, T., P. I. A. Gomes & E. Takeda, 2010a. Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event. River Research and Applications 26: 960–976.

    Article  Google Scholar 

  • Asaeda, T., L. Rajapakse & M. Kanoh, 2010b. Fine sediment retention as affected by annual shoot collapse: Sparganium erectum as an ecosystem engineer in a lowland stream. River Research and Applications 26: 1153–1169.

    Article  Google Scholar 

  • Atapaththu, K. S. S. & T. Asaeda, 2014. Growth and stress responses of submersed macrophyte; Myriophyllum spicatum to turbulence and main flow. Proceedings of the Ecology and Civil Engineering Society: 305–308.

  • Babu, T. S., T. A. Akhtar, M. A. Lampi, S. Tripuranthakam, D. G. Dixon & B. M. Greenberg, 2003. Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant and Cell Physiology 44: 1320–1329.

    Article  CAS  PubMed  Google Scholar 

  • Bari, R. & J. G. Jones, 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69: 473–488.

    Article  CAS  PubMed  Google Scholar 

  • Barko, J. W., D. G. Hardin & M. S. Matthews, 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Canadian Journal of Botany 60: 877–887.

    Article  Google Scholar 

  • Best, E. P. H., 1980. Effects of nitrogen on the growth and nitrogenous compounds of Ceratophyllum demersum. Aquatic Botany 8: 197–206.

    Article  CAS  Google Scholar 

  • Biddington, N., 1986. The effects of mechanically-induced stress in plants – a review. Plant Growth Regulation 4: 103–123.

    Article  CAS  Google Scholar 

  • Binzer, T., J. Borum & O. Pedersen, 2005. Flow velocity affects internal oxygen conditions in the seagrass Cymodocea nodosa. Aquatic Botany 83: 239–247.

    Article  Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.

    Article  CAS  Google Scholar 

  • Braam, J., 2005. In touch: plant responses to mechanical stimuli. New Phytologist 165: 373–389.

    Article  PubMed  Google Scholar 

  • Cao, T., P. Xie, L. Ni, A. Wu, M. Zhang, S. Wu & A. Smolders, 2007. The role of NH4 + toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin, China. Marine and Freshwater Research 58: 581–587.

    Article  CAS  Google Scholar 

  • Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249–257.

    Article  Google Scholar 

  • Champika Ellawala, K., T. Asaeda & K. Kawamura, 2011. The effect of flow turbulence on plant growth and several growth regulators in Egeria densa Planchon. Flora – Morphology, Distribution, Functional Ecology of Plants 206: 1085–1091.

    Article  Google Scholar 

  • Chehab, E. W., E. Eich & J. Braam, 2009. Thigmomorphogenesis: a complex plant response to mechano-stimulation. Journal of Experimental Botany 60: 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Dale, H. M., 1986. Temperature and light: the determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia 133: 73–77.

    Article  Google Scholar 

  • DeEll, J. R. & P. M. A. Toivonen, 2003. Practical Applications of Chlorophyll Fluorescencein Plant Biology. Springer, London.

    Book  Google Scholar 

  • Delledonne, M., J. Zeier, A. Marocco & C. Lamb, 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences 98: 13454–13459.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., A. M. Gilmore & W. W. Adams, 1996. Carotenoids 3: in vivo function of carotenoids in higher plants. The FASEB Journal 10: 403–412.

    CAS  Google Scholar 

  • Dybkaer, R., 2001. Unit “katal” for catalytic activity. Pure and Applied Chemistry 73: 927–931.

    Article  CAS  Google Scholar 

  • Ellawala, C., T. Asaeda & K. Kawamura, 2011. Influence of flow turbulence on growth and indole acetic acid and H2O2 metabolism of three aquatic macrophyte species. Aquatic Ecology 45: 417–426.

    Article  CAS  Google Scholar 

  • Ellawala, C., T. Asaeda & K. Kawamura, 2013. Water movement induced variations in growth regulation and metabolism of freshwater macrophyte Vallisneria spiralis L. in early growth stages. Hydrobiologia 709: 173–182.

    Article  CAS  Google Scholar 

  • Erner, Y. & M. J. Jaffe, 1982. Thigmomorphogenesis: the involvement of auxin and abscisic acid in growth retardation due to mechanical perturbation. Plant and Cell Physiology 23: 935–941.

    CAS  Google Scholar 

  • Erner, Y., R. Biro & M. J. Jaffe, 1980. Thigmomorphogenesis: evidence for a translocatable thigmomorphogenetic factor induced by mechanical perturbation of beans (Phaseolus vulgaris). Physiologia Plantarum 50: 21–25.

    Article  Google Scholar 

  • Folkard, A. M., 2011. Vegetated flows in their environmental context: a review. In Proceedings of the ICE – Engineering and Computational Mechanics: 3–24.

  • Gill, S. S. & N. Tuteja, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, S. A. & R. P. Weber, 1951. Colorimetric estimation of indoleacitic acid. Plant Physiology 26: 192–195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green, J. C., 2005. Velocity and turbulence distribution around lotic macrophytes. Aquatic Ecology 39: 01–10.

    Article  Google Scholar 

  • Grumbach, K. H. & H. K. Lichtenthaler, 1982. Chloroplast pigments and their biosynthesis in relation to light intensity. Photochemistry and Photobiology 35: 209–212.

    Article  CAS  Google Scholar 

  • Handley, R. J. & A. J. Davy, 2002. Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquatic Botany 73: 129–136.

    Article  Google Scholar 

  • Hoagland, D. R. & D. I. Amon, 1938. The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular 347: 1–39.

    CAS  Google Scholar 

  • Horne, A. J. & C. R. Goldman, 1994. Limnology. McGraw-Hill, New York.

    Google Scholar 

  • Iiyama, K. & A. F. A. Wallis, 1988. An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Science and Technology 22: 271–280.

    Article  CAS  Google Scholar 

  • Jaegher, G., N. Boyer & T. Gaspar, 1985. Thigmomorphogenesis inBryonia dioica: changes in soluble and wall peroxidases, phenylalanine ammonia-lyase activity, cellulose, lignin content and monomeric constituents. Plant Growth Regulation 3: 133–148.

    Article  Google Scholar 

  • Jana, S. & M. A. Choudhuri, 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Botany 12: 345–354.

    Article  CAS  Google Scholar 

  • Jayakumar, A. R., K. S. Panickar, C. R. K. Murthy & M. D. Norenberg, 2006. Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. The Journal of Neuroscience 26: 4774–4784.

    Article  CAS  PubMed  Google Scholar 

  • Kadono, Y., 1994. Aquatic plants of Japan (in Japanse). Bun-ichi Sogo Shuppan, Co, Ltd, Nishigokencho.

  • Kawano, N., T. Kawano & F. Lapeyrie, 2003. Inhibition of the indole-3-acetic acid-induced epinastic curvature in tobacco leaf strips by 2,4-dichlorophenoxyacetic acid. Annals of Botany 91: 465–471.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krinsky, N. I., 1978. Non-photosynthetic functions of carotenoids. Philosophical Transactions of the Royal Society of London B, Biological Sciences 284: 581–590.

    Article  CAS  Google Scholar 

  • Lin, C. & C. Kao, 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation 30: 151–155.

    Article  CAS  Google Scholar 

  • MacAdam, J. W., C. J. Nelson & R. E. Sharp, 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology 99: 872–878.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Madsen, T. V., H. O. Enevoldsen & T. B. Jørgensen, 1993. Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Plant, Cell & Environment 16: 317–322.

    Article  Google Scholar 

  • Mitchell, C. A., 1996. Recent advances in plant response to mechanical stress: theory and application. Hortscience 31: 31–35.

    CAS  PubMed  Google Scholar 

  • Mony, C., G. Thiébaut & S. Muller, 2007. Changes in morphological and physiological traits of the freshwater plant Ranunculus peltatus with the phosphorus bioavailability. Plant Ecology 191: 109–118.

    Article  Google Scholar 

  • Morrison, I. M., E. A. Asiedu, T. Stuchbury & A. A. Powell, 1995. Determination of lignin and tannin contents of cowpea seed coats. Annals of Botany 76: 287–290.

    Article  CAS  Google Scholar 

  • Nakano, Y. & K. Asada, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22: 867–880.

    CAS  Google Scholar 

  • Nepf, H. M., 2012. Hydrodynamics of vegetated channels. Journal of Hydraulic Research 50: 262–279.

    Article  Google Scholar 

  • Olson, E. R., S. J. Ventura & J. B. Zedler, 2012. Merging geospatial and field data to predict the distribution and abundance of an exotic macrophyte in a large Wisconsin reservoir. Aquatic Botany 96: 31–41.

    Article  Google Scholar 

  • Panda, S. K. & M. H. Khan, 2004. Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Brazilian Journal of Plant Physiology 16: 115–118.

    Article  CAS  Google Scholar 

  • Potters, G., T. P. Pasternak, Y. Guisez, K. J. Palme & M. A. K. Jansen, 2007. Stress-induced morphogenic responses: growing out of trouble? Trends in Plant Science 12: 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Pujol, D., J. Colomer, T. Serra & X. Casamitjana, 2010. Effect of submerged aquatic vegetation on turbulence induced by an oscillating grid. Continental Shelf Research 30: 1019–1029.

    Article  Google Scholar 

  • Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9–21.

    Article  Google Scholar 

  • Saibo, N. J. M., T. Lourenço & M. M. Oliveira, 2009. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany 103: 609–623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saidi, I., S. Ammar, N. Demont-Caulet, J. Thévenin, C. Lapierre, S. Bouzid & L. Jouanin, 2009. Thigmomorphogenesis in Solanum lycopersicum: morphological and biochemical responses in stem after mechanical stimulation. Plant Science 177: 1–6.

    Article  CAS  Google Scholar 

  • Saidi, I., S. Ammar, N. Demont-CauletSaïda, J. Thévenin, C. Lapierre, S. Bouzid & L. Jouanin, 2010. Thigmomorphogenesis in Solanum lycopersicum: morphological and biochemical responses in stem after mechanical stimulation. Plant Signaling & Behavior 5: 122–125.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & O. Pedersen, 1999. Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biology 42: 315–328.

    Article  Google Scholar 

  • Schutten, J., J. Dainty & A. J. Davy, 2004. Wave-induced hydraulic forces on submerged aquatic plants in Shallow Lakes. Annals of Botany 93: 333–341.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sillanpää, M., S. Kontunen-Soppela, E.-M. Luomala, S. Sutinen, J. Kangasjärvi, H. Häggman & E. Vapaavuori, 2005. Expression of senescence-associated genes in the leaves of silver birch (Betula pendula). Tree Physiology 25: 1161–1172.

    Article  PubMed  Google Scholar 

  • Smolders, A. J. P., C. den Hartog, C. B. L. van Gestel & J. G. M. Roelofs, 1996. The effects of ammonium on growth, accumulation of free amino acids and nutritional status of young phosphorus deficient Stratiotes aloides plants. Aquatic Botany 53: 85–96.

    Article  CAS  Google Scholar 

  • Šraj-Kržič, N., M. Germ, O. Urbanc-Berčič, U. Kuhar, G. Janauer & A. Gaberščik, 2007. The quality of the aquatic environment and macrophytes of karstic watercourses. Plant Ecology 192: 107–118.

    Article  Google Scholar 

  • Strzałka, K., A. Kostecka-Gugała & D. Latowski, 2003. Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology 50: 168–173.

    Article  Google Scholar 

  • Thomaz, S., L. Bini & R. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Thomaz, S., T. Pagioro, L. Bini & K. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.

    Article  Google Scholar 

  • Updegraff, D. M., 1969. Semimicro determination of cellulose inbiological materials. Analytical Biochemistry 32: 420–424.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., S. H. Zhang, P. F. Wang, J. Hou, W. Li & W. J. Zhang, 2008. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquatic Toxicology 87: 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Wellburn, A. R., 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307–313.

    Article  CAS  Google Scholar 

  • Westlake, D. F., 1967. Some effects of low-velocity currents on the metabolism of aquatic macrophytes. Journal of Experimental Botany 18: 187–205.

    Article  Google Scholar 

  • Xiong, H., Q. Tan & C. Hu, 2010. Structural and metabolic responses of Ceratophyllum demersum to eutrophic conditions. African Journal of Biotechnology 9: 5722–5729.

    CAS  Google Scholar 

  • Young, A. J., 1991. The photoprotective role of carotenoids in higher plants. Physiologia Plantarum 83: 702–708.

    Article  CAS  Google Scholar 

  • Zaman, T. & T. Asaeda, 2013. Effects of NH4–N concentrations and gradient redox level on growth and allied biochemical parameters of Elodea nuttallii (Planch.). Flora – Morphology, Distribution, Functional Ecology of Plants 208: 211–219.

    Article  Google Scholar 

  • Zhang, M., T. Cao, L. Ni, P. Xie & Z. Li, 2010. Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environmental and Experimental Botany 68: 44–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a Research Grant-in-Aid from the River Basin Environment Foundation and the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors wish to acknowledge Mr. Kalum Sanjaya, Mr. T. Yoshida, and Mr. Mochizuki for their assistance during the fieldwork. Dr. Harun Rashid is gratefully acknowledged for his remarks on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Asaeda.

Additional information

Handling editor: Sidinei Magela Thomaz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atapaththu, K.S.S., Asaeda, T. Growth and stress responses of Nuttall’s waterweed Elodea nuttallii (Planch) St. John to water movements. Hydrobiologia 747, 217–233 (2015). https://doi.org/10.1007/s10750-014-2141-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2141-9

Keywords

Navigation