Skip to main content

Advertisement

Log in

Cryptic intercontinental dispersal, commercial retailers, and the genetic diversity of native and non-native cattails (Typha spp.) in North America

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although cattails (Typha spp.) are important components of wetlands around the world, the three most widespread species (T. angustifolia, T. domingensis, T. latifolia) are becoming increasingly dominant. We used global phylogenetic and phylogeographic assessments to test the hypotheses that each species has experienced multiple introductions of divergent lineages into North America and that commercial retailers are aiding long-distance dispersal. Our analyses identified T. angustifolia as a paraphyletic species with a highly divergent lineage. We found evidence for at least one introduced T. angustifolia lineage in wild populations and garden centres of North America. Although potentially complicated by incomplete lineage sorting, our data suggest dispersal of T. domingensis between Europe and Australia, and further investigation should assess a possible introduction of a non-native T. domingensis lineage into North America. T. latifolia has experienced bidirectional dispersal between North America and Europe, and a sample of T. latifolia purchased in a Canadian garden centre was an Asian lineage. Interspecific hybridization and novel intraspecific admixture have been repeatedly implicated in biological invasions, including invasions by the hybrid cattail Typha × glauca, and future work should focus on the potential contributions of non-native lineages to regional patterns of invasion by Typha spp. in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AVH: Australia’s Virtual Herbarium. Available at: http://avh.chah.org.au. Accessed on August 12, 2013.

  • Barnard, J., 1882. Economic value of the aquatic plant Typha latifolia. Papers & Proceedings of the Royal Society of Tasmania 17: 163–167.

    Google Scholar 

  • Beare, P. A. & J. B. Zedler, 1987. Cattail invasion and persistence in a coastal salt-marsh – the role of salinity reduction. Estuaries 10: 165–170.

    Article  Google Scholar 

  • Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155.

    Article  PubMed  Google Scholar 

  • Briggs, B.G., 1987. Flora of Australia Online eds. Available at: http://www.anbg.gov.au/abrs/online-resources/flora. Accessed June 15, 2013.

  • Brinson, M. M. & A. I. Malvarez, 2002. Temperate freshwater wetlands: types, status, and threats. Environmental Conservation 29: 115–133.

    Article  Google Scholar 

  • Champion P. D. C. & J. S. Clayton, 2001. Border control for potential aquatic weeds. Stage 2. Weed risk assessment. In: (ed. Department of Conservation, Wellington, New Zealand) 185: 1–30. Department of Conservation Science Publications, Science & Research Unit.

  • Ciotir, C., H. Kirk, J. Row & J. R. Freeland, 2013. Intercontinental dispersal of Typha angustifolia and T. latifolia between Europe and North America has implications for Typha invasions. Biological Invasions 15: 1377–1390.

    Article  Google Scholar 

  • Cirujano, S., 2002. Typhaceae. In Bolibar, S. C. (ed), Flora Iberica. Real Jardín Botánico, Vol. 18. CSIC, Madrid.

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

    Article  PubMed  CAS  Google Scholar 

  • Dlugosch, K. M. & I. M. Parker, 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17: 431–449.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, A. J. & A. Rambaut, 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 8.

    Article  Google Scholar 

  • Freeland, J. R., C. Ciotir & H. Kirk, 2013. Regional differences in the abundance of native, introduced, and hybrid Typha spp. in northeastern North America influence wetland invasions. Biological Invasions 15: 2651–2665.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson & P. D. Ascher, 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–755.

    Article  Google Scholar 

  • Geller, J. B., J. A. Darling & J. T. Carlton, 2010. Genetic perspectives on marine biological invasions. Annual Reviews in Marine Science 2: 367–393.

    Article  Google Scholar 

  • Geze, J. B., 1912. Etudes botanique et agronomique sur les Typha et quelques autre plantes palustres. Société Anonyme D’Imprimerie de Villefranche-de-Rouergue.

  • Grace, J. B. & J. S. Harrison, 1986. The biology of Canadian Weeds. 73. Typha latifolia L., Typha angustifolia L. and Typha × glauca Godr. Canadian Journal of Plant Sciences 66: 361–379.

    Article  Google Scholar 

  • Gross, B. L. & L. H. Rieseberg, 2005. The ecological genetics of homoploid hybrid speciation. Journal of Heredity 96: 241–252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guisinger, M. M., T. W. Chumley, J. V. Kuehl, J. L. Boore, R. K. Jansen, 2010. Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. Journal of Molecular Evolution 70: 149–156.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta, A. K., 2013. Typha domingensis. In: IUCN 2013. IUCN Red List of Threatened Species version 2013.1. www.iucnredlist.org. Accessed on August 12, 2013.

  • Hall, T. A., 1999. Bioedit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium Series 41: 95–98.

    CAS  Google Scholar 

  • Hawaii Invasive Species Council (HISC) Available at: http://www.hawaiiinvasivespecies.org/pests/cattail.html. Accessed on August 12, 2013.

  • Hickman, J. C., 1993. The Jepson Manual. Higher Plants of California. University of California Press, Berkeley.

    Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Hussner, A., 2012. Alien aquatic plant species in European countries. Weed Research 52: 297–306.

    Article  Google Scholar 

  • ISSG: Global Invasive Species Database, 2006. Typha latifolia. Available at: http://www.issg.org/database/species/ecology.asp?si=895&fr=1&sts=&lang=EN.

  • Kim, C. & H. K. Choi, 2011. Molecular systematics and character evolution of Typha (Typhaceae) inferred from nuclear and plastid DNA sequence data. Taxon 60: 1417–1428.

    Google Scholar 

  • Kirk, H., C. Connolly & J. R. Freeland, 2011. Molecular genetic data reveal hybridization between Typha angustifolia and Typha latifolia across a broad spatial scale in eastern North America. Aquatic Botany 95: 189–193.

    Article  Google Scholar 

  • Klymus, K. E., S. C. Humfeld, V. T. Marshall, D. Cannatella & H. C. Gerhardt, 2010. Molecular patterns of differentiation in canyon treefrogs (Hyla arenicolor): evidence for introgressive hybridization with the Arizona treefrog (H.wrightorum) and correlations with advertisement call differences. Journal of Evolutionary Biology 23: 1425–1435.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kolbe, J. J., R. E. Glor, L. R. G. Schettino, A. C. Lara, A. Larson & J. B. Losos, 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Kodandaramaiah, U., 2010. Use of dispersal–vicariance analysis in biogeography – a critique. Journal of Biogeography 37: 3–11.

    Article  Google Scholar 

  • Kun, S. & D. Simpson, 2010. Flora of China, Typhaceae, 23, 161-163. Available at: http://flora.huh.harvard.edu/china/mss/volume23/Flora_of_China_Vol_23_Typhaceae.pdf. Accessed on January 07, 2014.

  • Lavergne, S. & J. Molofsky, 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences 104: 3883–3888.

    Article  CAS  Google Scholar 

  • Lavoie, D. M., L. D. Smith & G. M. Ruiz, 1999. The potential for intracoastal transfer of non-indigenous species in the ballast water of ships. Estuarine, Coastal and Shelf Science 48: 551–564.

    Article  Google Scholar 

  • Lemmon, E. M., A. R. Lemmon, J. T. Collins, J. A. Lee-Yaw & D. C. Cannatella, 2007. Phylogeny-based delimitation of species boundaries and contact zones in the trilling chorus frogs (Pseudacris). Molecular Phylogenetics and Evolution 44: 1068–1082.

    Article  PubMed  Google Scholar 

  • Mack, R. N. & W. M. Lonsdale, 2007. Humans as global plant dispersers: getting more than we bargained for. Bioscience 51: 95–102.

    Article  Google Scholar 

  • Marson, D., B. Cudmore, D.A.R. Drake & N.E. Mandrak, 2009. Summary of a survey of water garden owners in Canada. Canadian manuscript report of fisheries and aquatic sciences 2906: vi, 23p.

  • Martin, G. D. & J. A. Coetzee, 2011. Pet stores, aquarists and the internet trade as modes of introduction and spread of invasive macrophytes in South Africa. Water SA 37: 371–380.

    Article  Google Scholar 

  • Miao, S. L., 2004. Rhizome growth and nutrient resorption: mechanisms underlying the replacement of two clonal species in Florida Everglades. Aquatic Botany 78: 55–66.

    Article  CAS  Google Scholar 

  • Mills, E. L., J. H. Leach, J. T. Carlton & C. L. Secor, 1993. Exotic species in the Great-Lakes – a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research 19: 1–54.

    Article  Google Scholar 

  • Newman, S., J. Schuette, J. B. Grace, K. Rutchey, T. Fontaine, K. R. Reddy & M. Pietrucha, 1998. Factors influencing cattail abundance in the northern Everglades. Aquatic Botany 60: 265–280.

    Article  Google Scholar 

  • Nikulina, E. A., R. Hanel & P. Schafer, 2007. Cryptic speciation and paraphyly in the cosmopolitan bryozoan Electra pilosa – Impact of the Tethys closing on species evolution. Molecular Phylogenetics and Evolution 45: 765–776.

    Article  PubMed  CAS  Google Scholar 

  • Nylander, J. A., 2004. MrModelTest, version 2.3. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. Available at: https://github.com/nylander/MrModeltest2.

  • Olson, A., J. Paul, J. R. Freeland, 2009. Habitat preferences of cattail species and hybrids (Typha spp.) in eastern Canada. Aquatic Botany 91: 67–70.

    Article  Google Scholar 

  • Osland, M. J., E. Gonzalez & C. J. Richardson, 2011. Restoring diversity after cattail expansion: disturbance, resilience, and seasonality in a tropical dry wetland. Ecological Applications 21: 715–728.

    Article  PubMed  Google Scholar 

  • Paczkowska, G., 1994. Typha domingensis in Western Australian Herbarium (1998–). FloraBase—the Western Australian Flora. Department of Parks and Wildlife eds. Available at: http://florabase.dpaw.wa.gov.au/.

  • Parsons, W. T. & E. G., Cuthbertson, 2001 Family Typhaceae. Noxious Weeds of Australia. CSIRO Publishing, Victoria.

  • Rambaut, A. & A. J. Drummond, 2008. Tracer version 1.5. Available at: http://tree.bio.ed.ac.uk/software/tracer/.

  • Reichard, S. H. & P. White, 2001. Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51: 103–113.

    Article  Google Scholar 

  • Roman, J. & J. A. Darling, 2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology and Evolution 22: 454–464.

    Article  PubMed  Google Scholar 

  • Sawada, M., A. E. Viau, K. Gajewski, 2003. The biogeography of aquatic macrophytes in North America since the last glacial maximum. Journal of Biogeography 30: 999–1017.

    Article  Google Scholar 

  • Schierenbeck, K. A. & N. C. Ellstrand, 2009. Hybridization and the evolution of invasiveness in plants and other organisms. Biological Invasions 11: 1093–1105.

    Article  Google Scholar 

  • Shih, J. G. & S. A. Finklestein, 2008. Range dynamics and invasive tendencies in Typha Latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 28: 1–16.

    Article  Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology and Systematics 40: 81–102.

    Article  Google Scholar 

  • Smith, S. G., 2000. Typhaceae A. L. Jussieu. – In: Flora of North America. Editorial Committee (eds). New York and Oxford. Online version, Available at: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10926 Accessed on August 10, 2013.

  • Snow, A. A., S. E. Travis, R. Wildovà, et al., 2010. Species-specific SSR alleles for studies of hybrid cattails (Typha latifolia × T. angustifolia; Typhaceae) in North America. American Journal of Botany 97: 2061–2067.

    Article  PubMed  Google Scholar 

  • Stevens, M. & C. Hoag, 2000. USDA-NRCS Plant Guide, Narrow leaf cattail, Typha angustifolia L., National Plant Data Center and Idaho Plant Materials Center. Available at: http://plants.usda.gov/plantguide/pdf/cs_tyan.pdf. Accessed on June 25, 2013.

  • Stevens, M. & C. Hoag, 2006. USDA – NRCS Plant Guide, Southern cattail, Typha domingensis Pers., National Plant Data Center and Idaho Plant Materials Center. Available at: http://plants.usda.gov/plantguide/pdf/cs_tydo.pdf. Accessed on August 11, 2013.

  • Taberlet, P., L. Gielly, G. Pautou & J. Bouvet, 1991. Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A. R. & C. F. Singh, 1993. A cladistics analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping.4. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. Clustal-W – Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Travis, S. E., J. E. Marburger, S. Windels & B. Kubatova, 2010. Hybridization dynamics of invasive cattail (Typhaceae) stands in the western Great Lakes Region of North America: a molecular analysis. Journal of Ecology 98: 7–16.

    Article  Google Scholar 

  • Tsyusko-Omeltchenko, O. V., N. A. Schable, M. H. Smith, T. C. Glenn, 2003. Microsatellite loci isolated from narrowleaved cattail Typha angustifolia. Molecular Ecology Notes 3: 535–538.

    Article  CAS  Google Scholar 

  • USDA-ARS, 2005. National Genetic Resources Program. Typha latifolia L. Germplasm Resources Information Network – (GRIN) (Online Database). National Germplasm Resources Laboratory, Beltsville, Maryland. Available at: http://www.ars-grin.gov2/cgi-bin/npgs/html/taxon.pl?101629. Accessed on January 09, 2014.

  • USDA-NRCS, 2014. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. Available at: http://plants.usda.gov/core/profile?symbol=TYDO&mapType=nativity, http://plants.usda.gov/. Accessed on January 1st, 2014.

  • Vibrans, H., 2004. Malezas de México (on-line resource). Available at: http://www.conabio.gob.mx/malezasdemexico/typhaceae/typha-domingensis/fichas/pagina1.htm. Accessed on June 15, 2013.

  • WCSP, 2012. World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://apps.kew.org/wcsp/ Retrieved http://apps.kew.org/wcsp/qsearch.do;jsessionid=283D2A09C393D2E8236F3EC6ED30DAA4. Accessed on September 5, 2012.

  • Zapfe, L. & J. R. Freeland, 2015. Heterosis in invasive F1 cattail hybrids (Typha × glauca). Aquatic Botany 125: 44–47.

    Article  Google Scholar 

  • Zedler, J. B. & S. Kercher, 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Science 23: 431–452.

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Serena Caplins, Jennifer Coughlan, Sarah Dungan, Heather Kirk, Jonathan Mitchley Nicole Vachon, Morgan Wehtje, Walter Wehtje, Stan Yavno, and Chris Yesson for collecting cattail samples during their field trips in North America, Europe, and Africa. We are grateful to Dr. Jonathan Mitchley who provided shelter, transportation, and logistics during the fieldtrip in the UK and Europe. Special thanks to Dr. Chris Yesson for his contribution to the global map distributions, and for insightful biogeographic and phylogenetic advice. Many thanks to the Jack Matthews international scholarship at Trent University for covering the costs of the European field trip. This study was also funded by a Natural Sciences and Engineering Council (NSERC) Discovery Grant to JF, and Trent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Freeland.

Additional information

Handling editor: John Havel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciotir, C., Freeland, J. Cryptic intercontinental dispersal, commercial retailers, and the genetic diversity of native and non-native cattails (Typha spp.) in North America. Hydrobiologia 768, 137–150 (2016). https://doi.org/10.1007/s10750-015-2538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2538-0

Keywords

Navigation