Skip to main content
Log in

Phytoplankton functional dynamics in a shallow polymictic tropical lake: the influence of emergent macrophytes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study aimed at investigating the phytoplankton dynamics by employing taxonomic and functional models to test the hypothesis that emergent macrophytes could influence phytoplankton dynamics by increasing the stability of water column and harboring zooplankton. It was also hypothesized that functional models are better than taxonomic approaches to depict phytoplankton community structure in a polymictic tropical lake (Ziway, Ethiopia) with substantial macrophyte cover. Twelve sampling sites, extending from the macrophyte vegetation (Typha latifolia and Phragmites australis) covered littoral part to an open water side of the lake, were monitored monthly (January to August, 2016) for physical, chemical and biological parameters. A total of 93 taxa, distributed among six major taxonomic groups, 14 Reynolds functional groups and six morphology-based functional groups, were identified. The phytoplankton groups, which prefer stable water column and tolerate grazing dominated towards the macrophyte zones, while the phytoplankton capable of surviving strong mixing succeeded towards the completely mixing open water side of the lake. The results of the present study also suggest that the functional classification schemes are robust ways of detecting phytoplankton dynamics along the macrophyte-open water gradient in shallow tropical lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Ayenew, T. & D. Legesse, 2007. The changing face of the Ethiopian rift lakes and their environs: call of the time. Lakes & Reservoirs: Research & Management 12: 149–165.

    Article  Google Scholar 

  • Baker, P. D. & L. D. Fabbro, 2002. A Guide to the Identification of Common Blue-Green Algae (Cyanoprokaryotes) in Australian Freshwaters. Cooperative Research Centre for Freshwater Ecology, Thrugoona.

    Google Scholar 

  • Beamud, S., J. Leon, C. Kruk, F. Pedrozo & M. Diaz, 2015. Using trait-based approaches to study phytoplankton seasonal succession in a subtropical reservoir in arid central western Argentina. Environmental Monitoring and Assessment 187: 1–16.

    Article  CAS  Google Scholar 

  • Becker, V., V. L. C. M. Huszar & L. O. Crossetti, 2009. Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia 628: 137–151.

    Article  Google Scholar 

  • Bonilla, S., L. Aubriot, M. C. S. Soares, M. Gonzalez-Piana, A. Fabre, V. L. Huszar, M. Lurling, D. Antoniades, J. Padisák & C. Kruk, 2011. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology 79: 594–607.

    Article  PubMed  Google Scholar 

  • Borics, G. B., B. L. Tóthmérész, G. B. Várbíró, I. N. Grigorszky, A. Czébely & J. Görgényi, 2016. Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia 764: 81–90.

    Article  CAS  Google Scholar 

  • Bortolini, J. C., G. A. Moresco, A. C. M. de Paula, S. Jati & L. C. Rodrigues, 2015. Functional approach based on morphology as a model of phytoplankton variability in a subtropical floodplain lake: a long-term study. Hydrobiologia 767: 151–163.

    Article  Google Scholar 

  • Botes, L., 2003. Phytoplankton Identification Catalogue: Saldanha Bay, April 2001. Programme Coordination Unit, Global Ballast Water Management Programme. International Maritime Organization, London.

    Google Scholar 

  • Burford, M. A., K. L. McNeale & F. J. Mckenzie-Smith, 2006. The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshwater Biology 51: 2143–2153.

    Article  CAS  Google Scholar 

  • Cazzanelli, M., T. P. Warming & K. S. Christoffersen, 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113–122.

    Article  Google Scholar 

  • Cellamare, M., A. M. Lançon, M. Leitão, L. Cerasino, U. Obertegger & G. Flaim, 2016. Phytoplankton functional response to spatial and temporal differences in a cold and oligotrophic lake. Hydrobiologia 764: 199–209.

    Article  CAS  Google Scholar 

  • Choi, J.-Y., K.-S. Jeong, S.-K. Kim, G.-H. La, K.-H. Chang & G.-J. Joo, 2014. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24: 177–185.

    Article  Google Scholar 

  • Costa, L., V. Huszar & A. Ovalle, 2009. Phytoplankton functional groups in a tropical estuary: hydrological control and nutrient limitation. Estuaries and Coasts 32: 508–521.

    Article  CAS  Google Scholar 

  • Cottenie, K., N. Nuytten, E. Michels & L. De Meester, 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339–350.

    Article  Google Scholar 

  • Crossetti, L.O., Becker, V., de Souza Cardoso, L., Rodrigues, L.C.R., da Costa, L.S., da Motta-Marques, D., 2013. Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica—Ecology and Management of Inland Waters 43, 157-163.

  • de Castro Medeiros, L., A. Mattos, M. Lurling & V. Becker, 2015. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology 49: 293–307.

    Article  Google Scholar 

  • Degefu, F. & M. Schagerl, 2015. The phytoplankton community of tropical high-mountain crater lake Wonchi, Ethiopia. Hydrobiologia 755: 197–208.

    Article  CAS  Google Scholar 

  • Edward, G. B. & C. S. David, 2010. Freshwater Algae Identification and Use as Bioindicators. Wiley, Chichester: 101.

    Google Scholar 

  • Gross, E. M., S. Hilt, P. Lombardo & G. Mulderij, 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton—state of the art and open questions. Hydrobiologia 584: 77–88.

    Article  CAS  Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hoehn, E., Clasen, J., Scharf, W., Ketelaars, H., Nienhüser, A., Horn, H., Kersken, H., Ewig, B., 1998. Erfassung und Bewertung von Planktonorganismen. ATT-Technische Information Nr. 7., 2. völlig neu bearbeitete Aufl., Arbeitsgemeinschaft Trinkwassertalsperren, AK-Biologie, Siegburg. Verlag Oldenbourg, Miinchen.

  • Horppila, J. & L. Nurminen, 2001. The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake. Freshwater Biology 46: 1447–1455.

    Article  CAS  Google Scholar 

  • Huszar, V., L. Silva, M. Marinho, P. Domingos & C. Sant’Anna, 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. In Reynolds, C. S., M. Dokulil & J. Padisák (eds), The Trophic Spectrum Revisited. Springer, New York: 67–77.

    Chapter  Google Scholar 

  • Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Perez & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Søndergaard, M., Mazzeo, N., Meerhoff, M., Branco, C.C., Huszar, V., Scasso, F., 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. Restoration and Management of Tropical Eutrophic Lakes, 341-359.

  • Kadlec, R., 2005. Wetland to pond treatment gradients. Water Science and Technology 51: 291–298.

    CAS  PubMed  Google Scholar 

  • Keddy, P., 1992. A pragmatic approach to functional ecology. Functional Ecology 6: 621–626.

    Article  Google Scholar 

  • Kirk, J. T., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Komarkova, J., O. E. Komárek & J. Hejzlar, 2003. Evaluation of the long term monitoring of phytoplankton assemblages in a canyon-shape reservoir using multivariate statistical methods. Hydrobiologia 504: 143–157.

    Article  Google Scholar 

  • Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202.

    Article  CAS  Google Scholar 

  • Kruk, C., V. L. Huszar, E. T. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Legesse, D., Vallet-Coulomb, C., Gasse, F., 2001. Precipitation-runoff modelling in the Ziway-Shala Basin, Ethiopian Rift Valley. In: PAGES, International Conference on Past Climate Variability through Europe and Africa, Aix-en-Provence, August, pp. 27–31.

  • LFDP, 1997. Lake Fisheries Development Project Working Paper, Ziway. In: Proceedings of the National Fisheries Seminar. Ministry of Agriculture, Addis Ababa.

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

    Article  Google Scholar 

  • Lund, J., C. Kipling & E. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Men, Y.-J., H.-Y. Hu & F.-M. Li, 2007. Effects of the novel allelochemical ethyl 2-methylacetoacetate from the reed (Phragmitis australis Trin) on the growth of several common species of green algae. Journal of Applied Phycology 19: 521–527.

    Article  CAS  Google Scholar 

  • Mieleitner, J., M. Borsuk, H.-R. Bürgi & P. Reichert, 2008. Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquatic Sciences 70: 30–46.

    Article  Google Scholar 

  • Mihaljevic, M., F. Stevic, D. Spoljaric & T. Z. Pfeiffer, 2015. Spatial pattern of phytoplankton based on the morphology-based functional approach along a river-floodplain gradient. River Research and Applications 31: 228–238.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2011. Invited review-fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie, Algologie 32: 157–204.

    Article  Google Scholar 

  • Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia 764: 303–313.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.

    Article  Google Scholar 

  • OECD, 1982. Eutrophication of Waters, Monitoring, Assessment and Control: OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control). Environmental Directorate, Paris.

    Google Scholar 

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Article  Google Scholar 

  • Padisák, J., F. Barbosa, R. Koschel & L. Krienitz, 2003. Deep layer cyanoprokaryota maxima in temperate and tropical lakes. Archiv für Hydrobiologie Beiheft. Advances in Limnology 58: 175–199.

    Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pinto, P. D. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  CAS  Google Scholar 

  • Prescott, G.W., 1984. How to know the freshwater algae. WC Brown.

  • Rangel, L. M., M. C. S. Soares, R. Paiva & L. C. H. S. Silva, 2016. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river-reservoir system. Ecological Indicators 64: 217–227.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute Oldendorf/Luhe, Hamburg.

    Google Scholar 

  • Reynolds, C., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369: 11–26.

    Article  Google Scholar 

  • Reynolds, C. S., G. H. M. Jaworski, H. A. Cmiech & G. F. Leedale, 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. emend. Elenkin. Philosophical Transactions of the Royal Society of London B: Biological Sciences 293(1068): 419–477.

    Article  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2014. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Sarmento, H. & J.-P. Descy, 2008. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. Journal of Applied Phycology 20: 1001–1011.

    Article  Google Scholar 

  • Sitoki, L., R. Kurmayer & E. Rott, 2012. Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya). Hydrobiologia 691: 109–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares, M. C. S., V. L. Huszar, M. N. Miranda, M. M. Mello, F. Roland & M. Lurling, 2013. Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia 717: 1–12.

    Article  CAS  Google Scholar 

  • StatSoft, I., 2008. STATISTICA (Data Analysis Software System), Version 8. StatSoft, Tulsa.

    Google Scholar 

  • Straubinger-Gansberger, N., M. N. Kaggwa & M. Schagerl, 2014. Phytoplankton patterns along a series of small man-made reservoirs in Kenya. Environmental Monitoring and Assessment 186: 5153–5166.

    Article  PubMed  Google Scholar 

  • Sun, J. & D. Y. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Tamire, G. & S. Mengistou, 2013. Macrophyte species composition, distribution and diversity in relation to some physicochemical factors in the littoral zone of Lake Ziway, Ethiopia. African Journal of Ecology 51: 66–77.

    Article  Google Scholar 

  • Taylor, J. C., W. R. Harding & C. Archibald, 2007. An Illustrated Guide to Some Common Diatom Species from South Africa. Water Research Commission, Pretoria.

    Google Scholar 

  • ter Braak, C.J., Smilauer, P., 1998. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). www.canoco.com.

  • Tilahun, G. & G. Ahlgren, 2010. Seasonal variations in phytoplankton biomass and primary production in the Ethiopian Rift Valley lakes Ziway, Awassa and Chamo-The basis for fish production. Limnologica-Ecology and Management of Inland Waters 40: 330–342.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 9: 1–38.

    Google Scholar 

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Article  Google Scholar 

  • Wang, L., Q. Cai, L. Tan & L. Kong, 2011. Phytoplankton development and ecological status during a cyanobacterial bloom in a tributary bay of the Three Gorges Reservoir, China. Science of the Total Environment 409: 3820–3828.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., J. Zhu, Y. Gao, B. Liu, S. Liu, F. He & Z. Wu, 2013. Toxicity of allelochemicals released by submerged macrophytes on phytoplankton. Allelopathy Journal 31: 199–210.

    CAS  Google Scholar 

  • Weast, R. C., 1972. Handbook of Chemistry and Physics, 53rd ed. Chemical Rubber Publication, Cleveland.

    Google Scholar 

  • Weithoff, G., 2003. The concept of ‘plant functional types’ and ‘functional diversity’in lake phytoplankton—a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.

    Article  Google Scholar 

  • Wetzel, R. G., 1992. Gradient-Dominated Ecosystems: Sources and Regulatory Functions of Dissolved Organic Matter in Freshwater Ecosystems. Dissolved Organic Matter in Lacustrine Ecosystems. Springer, Berlin: 181–198.

    Book  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Gulf Professional Publishing, San Diego.

    Google Scholar 

  • Wetzel, R. & G. Likens, 2000. Limnolgical Analysis. WB Saunders Co., Philadelphia.

    Book  Google Scholar 

  • Zeray, L., Roehrig, J., Chekol, D.A., 2006. Climate change impact on Lake Ziway watershed water availability, Ethiopia. In: Conference on International Agricultural Research for Development.

  • Zhang, T.-T., W. Hu & D. Zhang, 2012. Allelopathic effect of Typha angustifolia L. on phytoplankton. Manufacturing Science and Technology 1–8: 3724–3728.

    Google Scholar 

  • Zinabu, G., E. Kebede-Westhead & Z. Desta, 2002. Long-term changes in chemical features of waters of seven Ethiopian rift-valley lakes. Hydrobiologia 477: 81–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Vlaamse Interuniversitaire Raad - Universitaire Ontwikkelingssamenwerking (VLIR-UOS PhD scholarship for Mesfin Gebrehiwot), Vrije Universiteit Brussel (VUB- BAS42) and Addis Ababa University for their financial and logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Gebrehiwot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: John M. Melack

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebrehiwot, M., Kifle, D., Stiers, I. et al. Phytoplankton functional dynamics in a shallow polymictic tropical lake: the influence of emergent macrophytes. Hydrobiologia 797, 69–86 (2017). https://doi.org/10.1007/s10750-017-3161-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3161-z

Keywords

Navigation