Skip to main content

Advertisement

Log in

The Effects of Cordycepin on Ovalbumin-Induced Allergic Inflammation by Strengthening Treg Response and Suppressing Th17 Responses in Ovalbumin-Sensitized Mice

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of the current study was to use a mouse model of allergic asthma to investigate whether cordycepin has antiasthmatic effects, and if so, to determine the mechanism of these effects. A total of 50 mice were randomly assigned to five experimental groups: control, model, dexamethasone (Dex, 2 mg/kg), and cordycepin (20–40 mg/kg). Histological studies were evaluated by the hematoxylin and eosin staining, OVA-specific serum and BALF IgE levels and Treg/Th17 cytokines were evaluated by enzyme-linked immunosorbent assay, and RORγt and Foxp3 were evaluated by western blot. Our study demonstrated that cordycepin inhibited OVA-induced increases in eosinophil count; IL-17A levels were recovered and increased IL-10 levels in bronchoalveolar lavage fluid. Histological studies demonstrated that cordycepin substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot study demonstrated that cordycepin increased Foxp3 and inhibited RORγt. These findings suggest that cordycepin may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schuijs, M.J., M.A. Willart, H. Hammad, and B.N. Lambrecht. 2013. Cytokine targets in airway inflammation. Current Opinion in Pharmacology 13: 351–361.

    Article  CAS  PubMed  Google Scholar 

  2. Greenfeder, S., S.P. Umland, F.M. Cuss, R.W. Chapman, and R.W. Egan. 2001. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respiratory Research 2: 71–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Romagnani, S. 2000. The role of lymphocytes in allergic disease. The Journal of Allergy and Clinical Immunology 105: 399–408.

    Article  CAS  PubMed  Google Scholar 

  4. Mosmann, T.R., and K.W. Moore. 1991. The role of IL-10 in cross regulation of TH1 and TH2 responses. Immunology Today 12: A49–A53.

    Article  CAS  PubMed  Google Scholar 

  5. Brewer, J.M., M. Conacher, and C.A. Hunter. 1999. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. Journal of Immunology 163: 6448–6454.

    CAS  Google Scholar 

  6. Weaver, C.T., and R.D. Hatton. 2009. Interplay between the TH17 and TReg cell lineages:a (co-)evolutionary perspective. Nature Reviews Immunology 12: 883–889.

    Article  Google Scholar 

  7. Sakaguchi, S., M. Ono, and R. Setoguchi. 2006. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews 212: 8–27.

    Article  CAS  PubMed  Google Scholar 

  8. Yoo, H.S., J.W. Shin, J.H. Cho, C.G. Son, Y.W. Lee, S.Y. Park, and C.K. Cho. 2004. Effect of cordyceps militarisextract on angiogenesis and tumor growth. Acta Pharmacologica Sinica 25: 657–665.

    CAS  PubMed  Google Scholar 

  9. Yun, Y.H., S.H. Han, S.J. Lee, S.K. Ko, C.K. Lee, N.J. Ha, and K.J. Kim. 2003. Anti-diabetic effects of CCCA, cmESS, and cordycepin from Cordyceps militaris and the immune responses in streptozotocin-induced diabetic mice. Natural Product Sciences 9: 291–298.

    CAS  Google Scholar 

  10. Cho, M.A., D.S. Lee, M.J. Kim, J.M. Sung, and S.S. Ham. 2003. Antimutagenicity and cytotoxicity of cordycepin isolated from Cordyceps militaris. Food Science and Biotechnology 12: 472–475.

    CAS  Google Scholar 

  11. Choi, S.B., C.H. Park, M.K. Choi, D.W. Jun, and S.M. Park. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipesin 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry 68: 2257–2264.

    Article  CAS  PubMed  Google Scholar 

  12. Sugar, A.M., and R.P. McCaffrey. 1998. Antifungal activity of 3′-deoxyadenosine (cordycepin). Antimicrobial Agents and Chemotherapy 42: 1424–1427.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. De Julian-Ortiz, J.V., J. Galvez, C. Munoz-Collado, R. Garcia-Domenech, and C. Gimeno-Cardona. 1999. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. Journal of Medicinal Chemistry 42: 3308–3314.

    Article  PubMed  Google Scholar 

  14. Zhou, X., C.U. Meyer, P. Schmidtke, and F. Zepp. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. European Journal of Pharmacology 453(2–3): 309–317.

    Article  CAS  PubMed  Google Scholar 

  15. Oh, S.R., M.Y. Lee, K. Ahn, B.Y. Park, O.K. Kwon, H. Joung, J. Lee, D.Y. Kim, S. Lee, J.H. Kim, and H.K. Lee. 2006. Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. International Immunopharmacology 6: 978–986.

    Article  CAS  PubMed  Google Scholar 

  16. Djukanovic, R., W.R. Roche, J.W. Wilson, et al. 1990. Mucosal inflammation in asthma. American Review of Respiratory Disease 142: 434–457.

    Article  CAS  PubMed  Google Scholar 

  17. Duan, W., J.H. Chan, C.H. Wong CH, et al. 2004. Anti inflammatory effects of mitogen-activated protein kinase inhibitor U0126 in an asthma mouse model. Journal of Immunology 172: 7053–7059.

    Article  CAS  Google Scholar 

  18. Jain, V.V., K. Kitagaki, T. Businga, et al. 2002. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. Journal of Allergy and Clinical Immunology 110(6): 867–872.

    Article  CAS  PubMed  Google Scholar 

  19. Elsner, J., and A. Kapp. 1999. Regulation and modulation of eosinophil effector functions. Allergy 54: 15–26.

    Article  CAS  PubMed  Google Scholar 

  20. Doganci, A., T. Eigenbrod, and N. Krug. 2005. The IL-6R alpha chain controls lung CD4+CD25+Treg development and function during allergic airway inflammation in vivo. Journal of Clinical Investigation 115: 313–325.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tianzhu, Z., Shihai, Y. & Juan, D. The Effects of Cordycepin on Ovalbumin-Induced Allergic Inflammation by Strengthening Treg Response and Suppressing Th17 Responses in Ovalbumin-Sensitized Mice. Inflammation 38, 1036–1043 (2015). https://doi.org/10.1007/s10753-014-0068-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0068-y

KEY WORDS

Navigation