Skip to main content
Log in

Two-Dimensional Terahertz Photonic Crystals Fabricated by Wet Chemical Etching of Silicon

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The fabrication of two-dimensional terahertz photonic crystals using wet chemical etching of high-resistivity silicon is described. Wet-etched photonic crystals with a sloped sidewall were fabricated in 16 × 10 square lattices with a period of 1430 μm and a height of 150 μm, and were bonded between two parallel Au-coated silicon wafers for tight confinement in the vertical direction. The formation of a photonic band gap at a frequency of about 0.1 THz with a width of 14 GHz is demonstrated by the experimental results and the numerical simulations of the transmission frequency spectrum for the transverse magnetic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett., 67, 2295-2298 (1991).

    Article  Google Scholar 

  2. E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys., 91, 960-968 (2002).

    Article  Google Scholar 

  3. J. R. Sirigiri, K. E. Kreischer, J. Machuzak, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, “Photonic-band-gap resonator gyrotron,” Phys. Rev. Lett., 86, 5628-5631 (2001).

    Article  Google Scholar 

  4. Y. D. Joo, G. S. Park, D. H. Kim, J. I. Kim, S. G. Jeon, S. T. Han, S. S. Jung, and J. U. Kim, “Design of a third-harmonic gyrotron oscillator using a photonic crystal cavity,” Jpn. J. Appl. Phys., 48, 074502 (2009).

    Article  Google Scholar 

  5. S. G. Jeon, Y. M. Shin, K. H. Jang, S. T. Han, J. K. So, Y. D. Joo, and G. S. Park, “High order mode formation of externally coupled hybrid photonic-band-gap cavity,” Appl. Phys. Lett., 90, 021112 (2007).

    Article  Google Scholar 

  6. K. H. Jang, S. G. Jeon, J. I. Kim, J. H. Won, J. K. So, S. H. Bak, A. Srivastava, S. S. Jung, and G. S. Park, “High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron,” Appl. Phys. Lett., 93, 211104 (2008).

    Article  Google Scholar 

  7. N. Jukam and M. S. Sherwin, “Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si,” Appl. Phys. Lett., 83, 21-23 (2003).

    Article  Google Scholar 

  8. Z. Jian, J. Pearch, and D. M. Mittleman, “Two-dimensional photonic crystals slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy,” Semicond. Sci. Technol., 20, S300 (2005).

    Article  Google Scholar 

  9. C. M. Yee and M. S. Sherwin, “High-Q Terahertz Microcavities in Silicon Photonic Crystal Slabs,” Appl. Phys. Lett., 94, 154104 (2009).

    Article  Google Scholar 

  10. A. Chelnokov, S. Rowson, J. M. Lourtioz, L. Duvillaret, and J. L. Coutaz, “Terahertz Characterisation of Mechanically Machined 3D Photonic Crystal,” Elec. Lett., 33, 1981-1983 (1981).

    Article  Google Scholar 

  11. A. Bingham, Y. Zhao, and D. Grischkowsky, “THz Parallel Plate Photonic Waveguides,” Appl. Phys. Lett., 87, 051101 (2005).

    Article  Google Scholar 

  12. A. L. Binghan and D. R. Grischkowsky, “Terahertz Two-Dimensional High-Q Photonic Crystal Waveguide Cavities,” Opt. Lett., 33, 348-350 (2008).

    Article  Google Scholar 

  13. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, “Micromachined Millimeter-Wave Photonic Band-Gap Crystals,” Appl. Phys. Lett., 64, 2059-2061 (1994).

    Article  Google Scholar 

  14. V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, “1D Photonic Crystal Fabricated by Wet Etching of Silicon,” Opt. Mater., 27, 831-835 (2005).

    Article  Google Scholar 

  15. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning Photonic Crystal Nanocavity Modes by Wet Chemical Digital Etching,” Appl. Phys. Lett., 87, 021108 (2005).

    Article  Google Scholar 

  16. Zheng Cui, Micro-fabrication Technologies and Applications, Higher Education Press, Beijing, China (2005).

    Google Scholar 

  17. CST Microwave Studio Manual (2009).

  18. Bing Wang and Guo Ping Wang, “Confining Light in Two-dimensional Slab Photonic Crystal Waveguides with Metal Plates,” Appl. Phys. Lett., 88, 193128 (2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Electrotechnology Research Institute (KERI) funded by the Korean government’s Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Il Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JI., Jeon, SG., Kim, GJ. et al. Two-Dimensional Terahertz Photonic Crystals Fabricated by Wet Chemical Etching of Silicon. J Infrared Milli Terahz Waves 33, 206–211 (2012). https://doi.org/10.1007/s10762-011-9867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-011-9867-5

Keywords

Navigation