Skip to main content
Log in

Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We review recent progress in polarization-sensitive time-domain spectroscopy at THz frequencies (THz-TDS). Developments in spectroscopic polarimetry and ellipsometry and various polarization components targeting THz frequencies are introduced. Polarization-sensitive measurements are suitable for studying the anisotropic responses of materials induced by factors such as structure, stress, and magnetic fields. Examples of observations of anisotropic characteristics of materials such as birefringence, optical activity, and magneto-optic effects are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. G. Dodel and W. Kunz, Infrared Physics 18, 773 (1978).

    Article  Google Scholar 

  2. R. L. Johnson, J. Barth, M. Cardona, D. Fuchs, and A. M. Bradshaw, Review of Scientific Instruments 60, 2209 (1989).

    Article  Google Scholar 

  3. C. Fattinger and D. Grischkowsky, Applied Physics Letters 54, 490 (1989).

    Article  Google Scholar 

  4. Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, Applied Physics Letters 54, 307 (1989).

    Article  Google Scholar 

  5. M. Hangyo, T. Nagashima, and S. Nashima, Measurement Science and Technology 13, 1727 (2002).

    Article  Google Scholar 

  6. M. Hangyo, M. Tani, and T. Nagashima, International Journal of Infrared and Millimeter Waves 26, 1661 (2005).

    Article  Google Scholar 

  7. H. Fujiwara, in Spectroscopic Ellipsometry: Principles and Applications, 1st ed. (Wiley, 2007).

  8. K.-L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, Thin Solid Films 234, 314 (1993).

    Article  Google Scholar 

  9. J. Kircher, R. Henn, M. Cardona, P. L. Richards, and G. P. Williams, J. Opt. Soc. Am. B 14, 705 (1997).

    Article  Google Scholar 

  10. T. Nagashima and M. Hangyo, Applied Physics Letters 79, 3917 (2001).

    Article  Google Scholar 

  11. T.-I. Jeon and D. Grischkowsky, Applied Physics Letters 72, 3032 (1998).

    Article  Google Scholar 

  12. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, Applied Physics Letters 79, 3923 (2001).

    Article  Google Scholar 

  13. N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, Optics Letters 36, 265 (2011).

    Article  Google Scholar 

  14. N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, Japanese Journal of Applied Physics 48, 09KC11 (2009).

    Article  Google Scholar 

  15. A. Rubano and L. Braun, Applied Physics Letters 101, 081103 (2012).

    Article  Google Scholar 

  16. M. Neshat and N. P. Armitage, Optics Express 20, 29063 (2012).

    Article  Google Scholar 

  17. G. Dresselhaus, A. Kip, and C. Kittel, Physical Review 98, 368 (1955).

    Article  Google Scholar 

  18. H. Sumikura, T. Nagashima, H. Kitahara, and M. Hangyo, Japanese Journal of Applied Physics 46, 1739 (2007).

    Article  Google Scholar 

  19. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, and R. Beigang, Optics Express 18, 26163 (2010).

    Article  Google Scholar 

  20. R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, Applied Physics Letters 81, 199 (2002).

    Article  Google Scholar 

  21. E. D. Palik and J. K. Furdyna, Rep. Prog. Phys. 33, 1193 (1970).

    Article  Google Scholar 

  22. C. J. Summers and D. Smith, Proceedings of the Physical Society 92, 215 (1967).

    Article  Google Scholar 

  23. M. Hasselbeck and P. Enders, Physical Review B 57, 9674 (1998).

    Article  Google Scholar 

  24. W. Spitzer and H. Fan, Physical Review 106, 882 (1957).

    Article  Google Scholar 

  25. T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, Review of Scientific Instruments 77, 063902 (2006).

    Article  Google Scholar 

  26. T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. a Woollam, and M. Schubert, Review of Scientific Instruments 81, 023101 (2010).

    Google Scholar 

  27. A. Mitsuishi, Y. Yamada, S. Fujita, and H. Yoshinaga, Journal of the Optical Society of America 50, 433 (1960).

    Article  Google Scholar 

  28. A. Wojdyla and G. Gallot, Optics Express 19, 1993 (2011).

    Article  Google Scholar 

  29. W. G. Chambers, T. J. Parker, and A. E. Costley, in Infrared and Millimeter Waves, Vol. 16, edited by K. J. Button (Academic Press, 1986), p. 77.

  30. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Optics Letters 34, 274 (2009).

    Article  Google Scholar 

  31. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, Optics Letters 36, 2665 (2011).

    Article  Google Scholar 

  32. T. Kondo, T. Nagashima, and M. Hangyo, Japanese Journal of Applied Physics 42, L373 (2003).

    Article  Google Scholar 

  33. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, Applied Physics Letters 101, 011101 (2012).

    Article  Google Scholar 

  34. K. Kozuki, T. Nagashima, and M. Hangyo, Optics Express 19, 24950 (2011).

    Article  Google Scholar 

  35. L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, Nano Letters 9, 2610 (2009).

    Article  Google Scholar 

  36. J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, Nano Letters 11, 4227 (2011).

    Article  Google Scholar 

  37. G. Grüner, editor, Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, 1998), p. 51.

  38. J. Masson and G. Gallot, Optics Letters 31, 265 (2006).

    Article  Google Scholar 

  39. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, Optics Express 18, 12168 (2010).

    Article  Google Scholar 

  40. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Optics Express 19, 24884 (2011).

    Article  Google Scholar 

  41. A. C. Strikwerda, K. Fan, H. Tao, D. V Pilon, X. Zhang, and R. D. Averitt, Optics Express 17, 136 (2009).

    Google Scholar 

  42. X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, Optics Express 17, 773 (2009).

    Article  Google Scholar 

  43. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, Optics Letters 31, 1112 (2006).

    Article  Google Scholar 

  44. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, Nature Communications 4, 1558 (2013).

    Article  Google Scholar 

  45. O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, Journal of Applied Physics 100, 33105 (2006).

    Article  Google Scholar 

  46. R. I. Hunter, D. A. Robertson, P. Goy, and G. M. Smith, IEEE Transactions on Microwave Theory and Techniques 55, 890 (2007).

    Article  Google Scholar 

  47. J. H. Boer, G. M. Kroesen, W. de Zeeuw, and F. J. de Hoog, Optics Letters 20, 800 (1995).

    Article  Google Scholar 

  48. Y. Ikebe and R. Shimano, Applied Physics Letters 92, 012111 (2008).

    Article  Google Scholar 

  49. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, Optics Express 15, 7047 (2007).

    Article  Google Scholar 

  50. H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, Optics Express 15, 11650 (2007).

    Article  Google Scholar 

  51. A. Hussain and S. R. Andrews, Optics Express 16, 7251 (2008).

    Article  Google Scholar 

  52. E. Castro-Camus, Journal of Infrared, Millimeter, and Terahertz Waves 33, 418 (2011).

    Google Scholar 

  53. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, Journal of the Optical Society of America B 18, 313 (2001).

    Article  Google Scholar 

  54. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, Journal of the Optical Society of America B 18, 823 (2001).

    Article  MATH  Google Scholar 

  55. N. van der Valk, T. Wenckebach, and P. Planken, Journal of the Optical Society of America B 21, 622 (2004).

    Article  Google Scholar 

  56. A. J. L. Adam, J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim, Comptes Rendus Physique 9, 161 (2008).

    Article  Google Scholar 

  57. R. Zhang, Y. Cui, W. Sun, and Y. Zhang, Applied Optics 47, 6422 (2008).

    Article  Google Scholar 

  58. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, Optics Communications 283, 4993 (2010).

    Article  Google Scholar 

  59. N. Yasumatsu and S. Watanabe, The Review of Scientific Instruments 83, 023104 (2012).

    Article  Google Scholar 

  60. S. Watanabe, N. Yasumatsu, K. Oguchi, M. Takeda, T. Suzuki, and T. Tachizaki, Sensors (Basel, Switzerland) 13, 3299 (2013).

  61. D. K. George, A. V. Stier, C. T. Ellis, B. D. McCombe, J. Černe, and A. G. Markelz, Journal of the Optical Society of America B 29, 1406 (2012).

    Article  Google Scholar 

  62. D. J. Aschaffenburg, M. R. C. Williams, D. Talbayev, D. F. Santavicca, D. E. Prober, and C. a Schmuttenmaer, Applied Physics Letters 100, 241114 (2012).

    Google Scholar 

  63. C. M. Morris, R. V. Aguilar, a V. Stier, and N. P. Armitage, Optics Express 20, 12303 (2012).

    Google Scholar 

  64. Q. Chen and X.-C. Zhang, Applied Physics Letters 74, 3435 (1999).

    Article  Google Scholar 

  65. R. Shimano, H. Nishimura, and T. Sato, Japanese Journal of Applied Physics 44, L676 (2005).

    Article  Google Scholar 

  66. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Physical Review Letters 95, 227401 (2005).

    Article  Google Scholar 

  67. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Optics Express 15, 11117 (2007).

    Article  Google Scholar 

  68. K. Sakai and L. Genzel, Reviews of Infrared and Millimeter Waves 1, edited by K. J. Button (Plenum, New York, 1983), p. 155.

  69. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).

    Article  Google Scholar 

  70. F. J. de Abajo, Reviews of Modern Physics 79, 1267 (2007).

    Article  Google Scholar 

  71. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).

    Article  Google Scholar 

  72. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, Science 305 , 847 (2004).

    Article  Google Scholar 

  73. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Applied Physics Letters 82, 2568 (2003).

    Article  Google Scholar 

  74. F. Miyamaru and M. Hangyo, Applied Optics 43, 1412 (2004).

    Article  Google Scholar 

  75. F. Miyamaru and M. Hangyo, in Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies 1, edited by H. Masuhara and S. Kawata (Elsevier, Amsterdam, 2004), pp. 313.

  76. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, Optics Letters 31, 1118 (2006).

    Article  Google Scholar 

  77. G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, Journal of Modern Optics 37, 1227 (1990).

    Article  Google Scholar 

  78. F. Miyamaru and M. Hangyo, Applied Physics Letters 89, 211103 (2006).

    Article  Google Scholar 

  79. M. Hangyo, K. Takano, K. Shibuya, F. Miyamaru, and H. Miyazaki, Proc. SPIE 7033, Plasmonics: 956 Nanoimaging, Nanofabrication, and Their Applications IV (2008), p. 70330W.

  80. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, Journal of the Optical Society of America B 7, 2006 (1990).

    Article  Google Scholar 

  81. E. Castro-Camus, J. Lloyd-Hughes, M. D. Fraser, H. H. Tan, C. Jagadish, and M. B. Johnston, Proc. SPIE 6120–29, Terahertz and Gigahertz Electronics and Photonics V (2006), p. 61200Q.

  82. S. Kojima, N. Tsumura, H. Kitahara, M. W. Takeda, and S. Nishizawa, Japanese Journal of Applied Physics 41, 7033 (2002).

    Article  Google Scholar 

  83. K. Wiesauer and C. Jördens, Journal of Infrared, Millimeter, and Terahertz Waves (2013).

  84. S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, Proceedings of the Joint 32nd International Conference on Infrared & Millimetre Waves and 15th International Conference on Terahertz Electronics (IRMMW-THz2007) (2007), pp. 666.

  85. M. Neshat and N. P. Armitage, Optics Letters 37, 1811 (2012).

    Google Scholar 

  86. T. Hofmann, C. M. Herzinger, T. E. Tiwald, J. a Woollam, and M. Schubert, Applied Physics Letters 95, 032102 (2009).

    Google Scholar 

  87. S. Schöche, J. Shi, a. Boosalis, P. Kühne, C. M. Herzinger, J. a Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, Applied Physics Letters 98, 092103 (2011).

  88. T. Hofmann, P. Kühne, S. Schöche, J.-T. Chen, U. Forsberg, E. Janzén, N. Ben Sedrine, C. M. Herzinger, J. a Woollam, M. Schubert, and V. Darakchieva, Applied Physics Letters 101, 192102 (2012).

    Google Scholar 

  89. F. Gervais and B. Piriou, Physical Review B 10, 1642 (1974).

    Article  Google Scholar 

  90. N. Yasumatsu and S. Watanabe, Optics Letters 37, 2706 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nagashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, T., Tani, M. & Hangyo, M. Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing. J Infrared Milli Terahz Waves 34, 740–775 (2013). https://doi.org/10.1007/s10762-013-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-0020-5

Keywords

Navigation