Skip to main content
Log in

Characterization of Hydroxyapatite-Glass Composites Using Terahertz Time-Domain Spectroscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz time-domain spectroscopy (THz-TDS) is presented as a tool for characterization of the hydroxyapatite (HA)-glass composites. The materials under investigation are composites of HA and a calcium zinc silicate glass. Our results show that the refractive index and dielectric constant in THz frequencies provide a reliable determination of glass content of these composites. In addition, the THz-TDS is used to morphological changes in HA during simulated body fluid (SBF) incubation. Our results demonstrate that the THz-TDS can be a promising non-destructive tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh, M. Zakeri, J. Alloys Comp. 430, 330 (2007).

    Article  Google Scholar 

  2. L.L. Hench and J. Wilson, Advanced series in ceramics. (World Scientific, Singapore, 1993), pp. 386-400.

    Google Scholar 

  3. M.H. Fathi, A. Hanifi, and V. Mortazavi, J. Mat. Pro. Tech. 202(1-3), 536 (2008).

    Article  Google Scholar 

  4. V.V. Silva, R.Z. Domingues, and F.S. Lameiras, Comp. Sci. Tech. 61(2), 301 (2001).

    Article  Google Scholar 

  5. Y. Hu, and X. Miao, Ceram. Int. 30(7), 1787 (2004).

    Article  Google Scholar 

  6. M.A. Lopes, F.J. Monteiro, and J.D. Santos, Biomaterials. 20(21), 2085 (1999).

    Article  Google Scholar 

  7. J.C. Knowles, S. Talal, and J.D. Santos, Biomaterials. 17(14), 1437 (1996).

    Article  Google Scholar 

  8. F.N. Oktar, and G. Göller, Ceram. Int. 28(6), 617(2002).

    Article  Google Scholar 

  9. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990).

    Article  Google Scholar 

  10. P.Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X. Zhang, J. App. Phys. 89, 2357 (2001).

    Article  Google Scholar 

  11. N. Fuse, R. Sato, M. Mizuno, K. Fukunga, K. Itoh, and Y. Ohki, Jpn. J. Appl. Phys. 49 (10), 102402 (2010).

    Article  Google Scholar 

  12. H. Hoshina, Y. Morisawa, H. Sato, A. Kamiya, I. Noda, Y. Ozaki, and C. Otani, Appl. Phys. Lett. 96, 101904 (2010).

    Article  Google Scholar 

  13. H. Hoshina, S. Ishii, Y. Morisawa, H. Sato, A. Kamiya, I. Noda, Y. Ozaki, and C. Otani, Appl. Phys. Lett. 100, 011907 (2012).

    Article  Google Scholar 

  14. S. Wietzke, M. Reuter, N. Nestle, E. Klimov, and B.M. Fischer, J. Infrared, Millim. Terahertz Waves 32(7), 952 (2011).

    Article  Google Scholar 

  15. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, J. Molecular Structure 1006 (1-3), 41 (2011).

    Article  Google Scholar 

  16. T. Kokubo and H. Takadama, Biomaterials. 27, 2097 (2006).

    Article  Google Scholar 

  17. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, J. Phys. D: App. Phys. 42, 065415 (2009).

    Article  Google Scholar 

  18. Y.W. Gu, K.A. Khor, P. Cheng, Biomaterials. 25, 4127 (2004).

    Article  Google Scholar 

  19. M.P. Mahabole, R.C. Aiyer, C.V. Ramakrishna, B. Sreedhar, and R.S. Khairnar, B. Mater. Sci. 28 (6), 535 (2005).

    Article  Google Scholar 

  20. C.C. Silva, D. Thomzini, A.G. Pinheiro, N. Aranha, S.D. Figueiro, J.C. Goes, and A.S.B. Sombra, Mater. Sci. Eng. B. 86,210 (2001).

    Article  Google Scholar 

  21. I. Ikoma, A. Yamazaki, S. Nakamura, and M. Akao, NetsuSokutaei 25 (5), 1225 (1998).

    Google Scholar 

  22. J.J. Prieto Valdes, A.V. Rodriguez, and J.G. Carrio, J. Mater. Res. 10 (9), 2174 (1996).

    Article  Google Scholar 

  23. C. Kittle, Introduction to Solid State Physics, 4th Edition (Wiley, New York, 1971), pp. 460-70.

    Google Scholar 

  24. K. Hyun-Min, T. Himeno, T. Kokubo, and T. Nakamura, Biomaterials. 26(21), 4366 (2005).

    Article  Google Scholar 

  25. JC Knowles, K. Gross, C.C. Berndt, and W. Bonfield, Biomaterials. 17, 639 (1996).

    Article  Google Scholar 

  26. S. Hayakawa, K. Ohnishi, K. Tsuru, A. Osaka, E. Fujii, K. Kawabata, F. Babonneau, and C. Bonhomme, Key. Eng. Mat. 309-311, 503 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sundaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatongchai, C., Wren, A.W. & Sundaram, S.K. Characterization of Hydroxyapatite-Glass Composites Using Terahertz Time-Domain Spectroscopy. J Infrared Milli Terahz Waves 36, 81–93 (2015). https://doi.org/10.1007/s10762-014-0103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0103-y

Keywords

Navigation