Skip to main content
Log in

1 THz Micromachined Waveguide Band-Pass Filter

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents a waveguide band-pass filter operating at the 0.75 ∼ 1.1 THz frequency band. The metal conductivity, the surface impedance, and the skin depth are investigated in the terahertz (THz) frequency band for more accurate designs, especially at the 1 THz and higher frequencies. Because the influence of the fabrication tolerance on the component performance cannot be negligible while the frequency increases, it is a necessary to adopt the simple structure with less resonant cavities for obtaining the given performance. Therefore, the filter in this paper is designed based on the TE301/TE102 dual-mode rectangular waveguide resonant cavities, which has fewer cavities and better rejection of the stop-band. The proposed filter is fabricated using the deep reactive ion etching (DRIE) micromachining technique. Measured results are in good agreement with simulations, which verifies the accuracy of the analysis above, and the design process is valuable to realize high-performance passive components while the frequency is up to 1 THz or higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. M. Lubecke, K. Mizuno and G. M. Rebeiz, “Micromachining for Terahertz Applications”, IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp. 1821–1831, 1998.

    Article  Google Scholar 

  2. J. Hu, S. Xie, and Y. Zhang, “Micromachined Terahertz Rectangular Waveguide Band pass Filter on Silicon-Substrate”, IEEE Microw. Wireless Compon. Lett., vol. 22, no. 12, pp. 636–638, 2012

    Article  Google Scholar 

  3. C. A. Leal-Sevillano, J. R. Montejo-Garai, M. Ke, M. J. Lancaster, J. A. Ruiz-Cruz and J. M. Rebollar, “A Pseudo-Elliptical Response Filter at W-Band Fabricated With Thick SU-8 Photo-Resist Technology”, IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, 2012

  4. Lu Bin and Cui Bohua, “Analysis and design of terahertz waveguide filter”, High Power Laser and Particle Beams, vol. 25, no. 6, pp. 1527–1529, 2013.

    Article  Google Scholar 

  5. Z. Chen, Y. Zheng, X. Kang, B. Lu and B. Cui, “WR-2.8 Band Micromachined Rectangular Waveguide Filter”, J. Infrared Milli. Terahz. Waves, pp.847–855, 2013

  6. X. Shang, M. L. Ke, Y. Wang and M. J. Lancaster, “Micromachined WR-3 waveguide filter with embedded bends”, Electron. Lett., vol. 47, no. 9, pp. 545–547, 2011

    Article  Google Scholar 

  7. J. R. Stanec and N. Scott Barker, “Fabrication and Integration of Micromachined Submillimeter-Wave Circuits”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 409–411, 2011

    Article  Google Scholar 

  8. Q. Chen, X. Shang, Y. Tian, J. Xu and M. J. Lancaster, “SU-8 micromachined WR-3 band waveguide bandpass filter with low insertion loss”, Electron. Lett., vol. 49, no. 7, pp. 480–482, 2013

    Article  Google Scholar 

  9. K. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. Gorospe, P. P. Chang-Chien, V. Radisic and W. R. Deal, “WR1.5 silicon micromachined waveguide components and active circuit integration methodology,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 4, pp. 998–1005, 2012

    Article  Google Scholar 

  10. C. A. Leal-Sevillano, T. J. Reck, C. Jung-Kubiak, G. Chattopadhyay, J. A. Ruiz-Cruz, J. R. Montejo-Garai and J. M. Rebollar, “Silicon Micromachined Canonical E-Plane and H-Plane Bandpass Filters at the Terahertz Band”, IEEE Microw. Wireless Compon. Lett., vol. 23, no. 6, pp. 288–290, 2013

    Article  Google Scholar 

  11. X. Shang, Y. Tian, M. J. Lancaster and S. Singh, “A SU8 Micromachined WR-1.5 Band Waveguide Filter”, IEEE Microw. Wireless Compon. Lett., vol. 23, no. 6, pp. 300–302, 2013

    Article  Google Scholar 

  12. A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram and J. M. Chamberlain, “Terahertz frequency bandpass filters”, J. Appl. Phys., vol. 102, no. 2, 2007

  13. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, A. D. Grine and C. T. Fuller, “Properties of Surface Metal Micromachined Rectangular Waveguide Operating Near 3 THz”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 1, pp. 130–137, 2011

    Article  Google Scholar 

  14. T. Reck, C. Jung-Kubiak, C. Leal-Sevillano and G. Chattopadhyay, “Silicon Micromachined Waveguide Components at 0.75 to 1.1 THz”, 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp. 1–2. 2014

  15. S. Liu, J. Hu, Y. Zhang, L. Li, W. Zhao, R. Xu and Q. Xue, “Silicon Micromachined Waveguide Quadrature-Hybrid Coupler at Terahertz Frequency Band”, J. Infrared Milli. Terahz. Waves, vol. 36, no. 8, pp. 709–719, 2015

    Article  Google Scholar 

  16. T. J. Reck, C. Jung-Kubiak, J. Gill and G. Chattopadhyay, “Measurement of Silicon Micromachined Waveguide Components at 500–750 GHz”, IEEE Trans. On terahertz Science and Technol., vol. 4, no. 1, pp. 33–38, 2014

    Article  Google Scholar 

  17. N. W. Ashcroft and N. D. Mermin, “Solid State Physics”, 1st ed. Pacific Grove, CA, USA: Brooks Cole, 1976

    MATH  Google Scholar 

  18. H. Nemec, P. Kuzel and V. Sundstrom, “Far-infrared response of free charge carriers localized in semiconductor nanoparticles”, Phys. Rev. B, vol. 79, no. 11, 2009

  19. S. Lucyszyn, “Investigation of anomalous room temperature conduction losses in normal metals at terahertz frequencies”, IEE Proc.-Microw. Antennas Propag., vol. 151, no. 4, pp. 321–329, 2004

    Article  Google Scholar 

  20. S. Lucyszyn, “Accurate CAD modelling of metal conduction losses at terahertz frequencies”, The 11th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications, pp. 180–185, 2003

  21. S. Lucyszyn, “Evaluating Surface Impedance Models for Terahertz Frequencies at Room Temperature”, PIERS Online, vol. 3, no. 4, pp. 554–559, 2007

    Article  Google Scholar 

  22. D. M. Pozar, “Microwave Engineering”, 4th ed., Hoboken, New Jersey: John Wiley & Sons, Inc., 2012

    Google Scholar 

  23. S. P. Morgan, “Effect of surface roughness on eddy current losses at microwave frequencies,” J. Appl. Phys., vol. 20, no. 4, pp. 352–362, 1949.

    Article  MATH  Google Scholar 

  24. E. Hammerstad and O. Jensen, “Accurate models for microstrip computer-aided design,” in IEEE MTT-S Microw. Symp. Dig., pp. 407–409, 1980

  25. H. Braunisch, X. Gu, A. Camacho-Bragado, and L. Tsang, “Off-chip rough-metal-surface propagation loss modeling and correlation with measurements,” in Proc. 57th Electron. Compon. Technol. Conf., pp. 785–791, 2007

  26. D. A. Hill, “Electromagnetic fields in cavities: deterministic and statistical theories”, Hoboken, New Jersey: John Wiley & Sons, Inc., 2009

    Book  Google Scholar 

  27. J. Hong, M. J. L ancaster, “Microstrip Filters for RF/Microwave Applications”, New York: John Wiley & Sons, Inc., 2011

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Haotian Zhu and Peng Wu, Department of Electronic Engineering, City University of Hong Kong, for the measurement and helpful discussion. This work was supported by the National Natural Science Foundation of China (G0501020161371054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Hu, J., Zhang, Y. et al. 1 THz Micromachined Waveguide Band-Pass Filter. J Infrared Milli Terahz Waves 37, 435–447 (2016). https://doi.org/10.1007/s10762-015-0229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0229-6

Keywords

Navigation