Skip to main content
Log in

Recent Progress in Terahertz Metasurfaces

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In the past decade, the concept of metasurfaces has gradually dominated the field of metamaterials owing to their fascinating optical properties and simple planar geometries. At terahertz frequencies, the concept has been driven further by the availability of advanced micro-fabrication technologies that deliver sub-micron accuracy, well below the terahertz wavelengths. Furthermore, terahertz spectrometers with high dynamic range and amplitude and phase sensitivity provide valuable information for the study of metasurfaces in general. In this paper, we review recent progress in terahertz metasurfaces mainly in the last 5 years. The first part covers nonuniform metasurfaces that perform beamforming in reflection and transmission. In addition, we briefly overview four different methodologies that can be utilized in realizing high-quality-factor metasurfaces. We also describe two recent approaches to tuning the frequency response of terahertz metasurfaces using graphene as an active medium. Finally, we provide a brief summary and outlook for future developments in this rapidly progressing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, 2000.

  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature, vol. 455, no. 7211, pp. 376–379, 2008.

  3. N. Fang, Sub-diffraction-limited optical imaging with a silver superlens, Science, vol. 308, no. 5721, pp. 534–537, 2005.

  4. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, vol. 314, no. 5801, pp. 977–980, 2006.

  5. W. Withayachumnankul and D. Abbott, Metamaterials in the terahertz regime, IEEE Photonics Journal, vol. 1, no. 2, pp. 99–118, 2009.

  6. J. Huang and J.A. Encinar, Reflectarray Antennas. Wiley-IEEE Press, 2007.

  7. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, vol. 334, no. 6054, pp. 333–337, 2011.

  8. N. Papasimakis, V.A. Fedotov, N.I. Zheludev, and S. Prosvirnin, Metamaterial analog of electromagnetically induced transparency, Physical Review Letters, vol. 101, no. 25, p. 253903, 2008.

  9. P. Tassin, L. Zhang, T. Koschny, E.N. Economou, and C.M. Soukoulis, Low-loss metamaterials based on classical electromagnetically induced transparency, Physical Review Letters, vol. 102, no. 5, p. 053901, 2009.

  10. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, and N.I. Zheludev, Toroidal dipolar response in a metamaterial, Science, vol. 330, no. 6010, pp. 1510–1512, 2010.

  11. C. Jansen, I.A.I. Al-Naib, N. Born, and M. Koch, Terahertz metasurfaces with high Q-factors, Applied Physics Letters, vol. 98, no. 5, p. 051109, 2011.

  12. W. Cao, R. Singh, I.A.I. Al-Naib, M. He, A.J. Taylor, and W. Zhang, Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials, Optics Letters, vol. 37, no. 16, pp. 3366–3368, 2012.

  13. Y. Chen, I.A.I. Al-Naib, J. Gu, M. Wang, T. Ozaki, R. Morandotti, and W. Zhang, Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors, AIP Advances, vol. 2, p. 022109, 2012.

  14. Y.K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, Ultrahigh-Q Fano resonances in terahertz metasurfaces: Strong influence of metallic conductivity at extremely low asymmetry, Advanced Optical Materials, vol. 4, no. 3, pp. 457–463, 2016.

  15. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nature Nanotechnology, vol. 6, pp. 630–634, 2011.

  16. S.H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H.K. Choi, S.S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nature Materials, vol. 11, no. 11, pp. 936–941, 2012.

  17. P.Q. Liu, I.J. Luxmoore, S.A. Mikhailov, N.A. Savostianova, F. Valmorra, J. Faist, and G.R. Nash, Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons, Nature Communications, vol. 6, p. 8969, 2015.

  18. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces, Physical Review X, vol. 5, no. 4, pp. 1–13, 2015.

  19. T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in terahertz communications accelerated by photonics, Nature Photonics, vol. 10, no. 6, pp. 371–379, 2016.

  20. A.A. Tavallaee, B.S. Williams, P.W.C. Hon, T. Itoh, and Q.-S. Chen, Terahertz quantum-cascade laser with active leaky-wave antenna, Applied Physics Letters, vol. 99, no. 14, p. 141115, 2011.

  21. H.-T. Chen, A.J. Taylor, and N. Yu, A review of metasurfaces: physics and applications, Reports on Progress in Physics, vol. 79, no. 7, p. 076401, 2016.

  22. K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, Low-profile terahertz radar based on broadband leaky-wave beam steering, IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 1, pp. 60–69, 2017.

  23. S. Larouche and D.R. Smith, Reconciliation of generalized refraction with diffraction theory, Optics Letters, vol. 37, no. 12, pp. 2391–2393, 2012.

  24. T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, Experimental demonstration of reflectarray antennas at terahertz frequencies, Optics Express, vol. 21, no. 3, pp. 2875–2889, 2013.

  25. T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, Terahertz reflectarray as a polarizing beam splitter, Optics Express, vol. 22, no. 13, pp. 16148–16160, 2014.

  26. T. Niu, A. Upadhyay, W. Withayachumnankul, D. Headland, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, Polarization-dependent thin-film wire-grid reflectarray for terahertz waves, Applied Physics Letters, vol. 107, no. 3, p. 031111, 2015.

  27. H. Hasani, S. Capdevila, M. Tamagnone, C. Moldovan, W.A. Vitale, A.M. Ionescu, C. Peixeiro, A. Skrivervik, and J.R. Mosig, Dual-band terahertz reflectarray integrated on a silicon substrate, in International Symposium on Antennas and Propagation (ISAP), pp. 120–121. IEEE, 2016.

  28. H. Hasani, M. Tamagnone, S. Capdevila, C.F. Moldovan, P. Maoddi, A.M. Ionescu, C. Peixeiro, J.R. Mosig, A.K. Skrivervik, and J. Perruisseau-Carrier, Tri-band, polarization-independent reflectarray at terahertz frequencies: design, fabrication, and measurement, IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 2, pp. 268–277, 2016.

  29. E. Carrasco and J. Perruisseau-Carrier, Reflectarray antenna at terahertz using graphene, IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 253–256, 2013.

  30. S.A. Kuznetsov, M.A. Astafev, M. Beruete, and M. Navarro-Cía, Planar holographic metasurfaces for terahertz focusing, Scientific Reports, vol. 5, p. 7738, 2015.

  31. D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, Terahertz magnetic mirror realized with dielectric resonator antennas, Advanced Materials, vol. 27, no. 44, pp. 7137–7144, 2015.

  32. D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface, ACS Photonics, vol. 3, no. 6, pp. 1019–1026, 2016.

  33. X. Su, C. Ouyang, N. Xu, W. Cao, X. Wei, G. Song, J. Gu, Z. Tian, J.F. O’Hara, J. Han, and W. Zhang, Active metasurface terahertz deflector with phase discontinuities, Optics Express, vol. 23, no. 21, pp. 27152–27158, 2015.

  34. C.G.M. Ryan, M.R. Chaharmir, J. Shaker, J.R. Bray, Y.M.M. Antar, and A. Ittipiboon, A wideband transmitarray using dual-resonant double square rings, IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1486–1493, 2010.

  35. C. Pfeiffer and A. Grbic, Millimeter-wave transmitarrays for wavefront and polarization control, IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4407–4417, 2013.

  36. Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, Efficient flat metasurface lens for terahertz imaging, Optics Express, vol. 22, no. 21, pp. 25931–25939, 2014.

  37. G. Liu, H. Wang, J. Jiang, and F. Xue, Terahertz substrateless transmitarray antenna design and microfabrication, Microwave and Optical Technology Letters, vol. 58, no. 9, pp. 2096–2100, 2016.

  38. J. Luo, H. Yu, M. Song, and Z. Zhang, Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces, Optics Letters, vol. 39, no. 8, pp. 2229–2231, 2014.

  39. J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, Generation and evolution of the terahertz vortex beam, Optics Express, vol. 21, no. 17, pp. 20230–20239, 2013.

  40. X.-Y. Jiang, J.-S. Ye, J.-W. He, X.-K. Wang, D. Hu, S.-F. Feng, Q. Kan, and Y. Zhang, An ultrathin terahertz lens with axial long focal depth based on metasurfaces, Optics Express, vol. 21, no. 24, pp. 30030–30038, 2013.

  41. D. Hu, G. Moreno, X. Wang, J. He, A. Chahadih, Z. Xie, B. Wang, T. Akalin, and Y. Zhang, Dispersion characteristic of ultrathin terahertz planar lenses based on metasurface, Optics Communications, vol. 322, pp. 164–168, 2014.

  42. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities, Advanced Materials, vol. 25, no. 33, pp. 4567–4572, 2013.

  43. Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, A broadband metasurface-based terahertz flat-lens array, Advanced Optical Materials, vol. 3, no. 6, pp. 779–785, 2015.

  44. J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, A broadband terahertz ultrathin multi-focus lens, Scientific Reports, vol. 6, p. 28800, 2016.

  45. J. Ding, N. Xu, H. Ren, Y. Lin, W. Zhang, and H. Zhang, Dual-wavelength terahertz metasurfaces with independent phase and amplitude control at each wavelength, Scientific Reports, vol. 6, p. 34020, 2016.

  46. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, and H.-T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science, vol. 340, no. 6138, pp. 1304–1307, 2013.

  47. J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, Terahertz tunable metasurface lens based on vanadium dioxide phase transition, Plasmonics, vol. 11, no. 5, pp. 1285–1290, 2016.

  48. E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection, Applied Physics Letters, vol. 102, no. 10, p. 104103, 2013.

  49. T. Yatooshi, A. Ishikawa, and K. Tsuruta, Terahertz wavefront control by tunable metasurface made of graphene ribbons, Applied Physics Letters, vol. 107, no. 5, p. 053105, 2015.

  50. L. Liu, Y. Zarate, H.T. Hattori, D.N. Neshev, I.V. Shadrivov, and D.A. Powell, Terahertz focusing of multiple wavelengths by graphene metasurfaces, Applied Physics Letters, vol. 108, no. 3, p. 031106, 2016.

  51. J.F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A.J. Taylor, and W. Zhang, Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations, Optics Express, vol. 16, no. 3, pp. 1786–1795, 2008.

  52. J.F. O’Hara, W. Withayachumnankul, and I. Al-Naib, A review on thin-film sensing with terahertz waves, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 33, pp. 245–291, 2012.

  53. W. Withayachumnankul, J.F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy, Optics Express, vol. 22, no. 1, pp. 972–986, 2014.

  54. I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators, IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 4, p. 4700405, 2017.

  55. N. Papasimakis and N.I. Zheludev, Metamaterial-induced transparency: sharp Fano resonances and slow light, Optics and Photonics News, vol. 20, no. 10, p. 22, 2009.

  56. C. Wu, A.B. Khanikaev, and G. Shvets, Slow light metamaterial based on a double-continuum Fano resonance, Physical Review Letters, vol. 106, p. 107403, 2011.

  57. L. Zhu, F.-Y. Meng, J.-H. Fu, Q. Wu, and J. Hua, Multi-band slow light metamaterial, Optics Express, vol. 20, no. 4, pp. 4494–4502, 2012.

  58. I. Al-Naib, C. Jansen, R. Singh, M. Walther, and M. Koch, Novel THz metamaterial designs: from near- and far-Field coupling to high-Q resonances, IEEE Transactions on Terahertz Science and Technology, vol. 3, no. 6, pp. 772–782, 2013.

  59. R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, The Fano resonance in symmetry broken terahertz metamaterials, IEEE Transactions on Terahertz Science and Technology, vol. 3, no. 6, pp. 820–826, 2013.

  60. P.H. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Bu̇ttner, Label-free probing of genes by time-domain terahertz sensing, Physics in Medicine and Biology, vol. 47, no. 21, pp. 3815–3821, 2002.

  61. A.J. Qavi, A.L. Washburn, J.-Y. Byeon, and R.C. Bailey, Label-free technologies for quantitative multiparameter biological analysis, Analytical and Bioanalytical Chemistry, vol. 394, no. 1, pp. 121–135, 2009.

  62. T. Hasebe, Y. Yamada, and H. Tabata, Label-free THz sensing of living body-related molecular binding using a metallic mesh, Biochemical and Biophysical Research Communications, vol. 414, no. 1, pp. 192–198, 2011.

  63. Y.C. Lai, H.C. Lee, S.W. Kuo, C.K. Chen, H.T. Wu, O.K. Lee, and T.J. Yen, Label-free, coupler-free, scalable and intracellular bio-imaging by multimode plasmonic resonances in split-ring resonators, Advanced Materials, vol. 24, no. 23, pp. 148–152, 2012.

  64. I. Al-Naib, G. Sharma, M.M. Dignam, H. Hafez, A. Ibrahim, D.G. Cooke, T. Ozaki, and R. Morandotti, Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial, Physical Review B, vol. 88, no. 19, p. 195203, 2013.

  65. H.Y. Hwang, S. Fleischer, N.C. Brandt, B.G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R.D. Averitt, and K.A. Nelson, A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses, Journal of Modern Optics, vol. 0340, pp. 1–33, 2014.

  66. A. Bitzer, J. Wallauer, H. Merbold, H. Helm, T. Feurer, and M. Walther, Lattice modes mediate radiative coupling in metamaterial arrays, Optics Express, vol. 17, no. 24, pp. 22108–22113, 2009.

  67. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, Coupling between a dark and a bright eigenmode in a terahertz metamaterial, Physical Review B, vol. 79, no. 8, p. 085111, 2009.

  68. R. Singh, I. Al-Naib, D.R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces, Applied Physics Letters, vol. 105, no. 8, p. 081108, 2014.

  69. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial, Optics Express, vol. 17, no. 5, pp. 3826–3834, 2009.

  70. J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study, Optics Express, vol. 19, no. 18, pp. 17283–17292, 2011.

  71. R. Singh, C. Rockstuhl, and W. Zhang, Strong influence of packing density in terahertz metamaterials, Applied Physics Letters, vol. 97, no. 24, p. 241108, 2010.

  72. R. Singh, I.A.I. Al-Naib, M. Koch, and W. Zhang, Sharp Fano resonances in THz metamaterials, Optics Express, vol. 19, no. 7, pp. 6312–6319, 2011.

  73. M. Manjappa, Y.K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, Active photoswitching of sharp Fano resonances in THz metadevices, Advanced Materials, vol. 29, no. 3, p. 1603355, 2017.

  74. S. Zhang, D.A. Genov, Y. Wang, M. Liu, and X. Zhang, Plasmon-induced transparency in metamaterials, Physical Review Letters, vol. 101, no. 4, pp. 1–4, 2008.

  75. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.-T. Chen, A.J. Taylor, J. Han, and W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials, Nature Communications, vol. 3, p. 1151, 2012.

  76. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonance, Physical Review Letters, vol. 112, p. 183903, 2014.

  77. M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N.I. Zheludev, and R. Singh, Sharp toroidal resonances in planar terahertz metasurfaces, Advanced Materials, pp. 8206–8211, 2016.

  78. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials, Applied Physics Letters, vol. 101, no. 7, p. 071108, 2012.

  79. I. Al-Naib, Y. Yang, M.M. Dignam, W. Zhang, and R. Singh, Ultra-high Q even eigenmode resonance in terahertz metamaterials, Applied Physics Letters, vol. 106, no. 1, p. 011102, 2015.

  80. N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices, Applied Physics Letters, vol. 104, no. 10, p. 101107, 2014.

  81. N. Born, I. Al-Naib, C. Jansen, R. Singh, J.V. Moloney, M. Scheller, and M. Koch, Terahertz metamaterials with ultrahigh angular sensitivity, Advanced Optical Materials, vol. 3, no. 5, pp. 642–645, 2015.

  82. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, Fano resonances in terahertz metasurfaces: A figure of merit optimization, Advanced Optical Materials, vol. 3, no. 11, pp. 1537–1543, 2015.

  83. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, vol. 306, no. 5696, pp. 666–669, 2004.

  84. L. a. Falkovsky, H. Search, C. Journals, A. Contact, M. Iopscience, and I.P. Address, Optical properties of graphene, Journal of Physics: Conference Series, vol. 129, p. 012004, 2008.

  85. S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics, vol. 83, no. 2, pp. 407–470, 2011.

  86. V. Ryzhii, M. Ryzhii, A. Satou, N. Ryabova, T. Otsuji, V. Mitin, F.T. Vasko, A.A. Dubinov, V.Y. Aleshkin, and M.S. Shur, Future Trends in Microelectronics: From Nanophotonics to Sensors and Energy, ch. Graphene-based terahertz devices: Concepts and characteristics. 2010.

  87. A. Tredicucci and M.S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE Journal on Selected Topics in Quantum Electronics, vol. 20, no. 1, pp. 130–138, 2014.

  88. A.J. Frenzel, C.H. Lui, Y.C. Shin, J. Kong, and N. Gedik, Semiconducting-to-metallic photoconductivity crossover and temperature-dependent drude weight in graphene, Physical Review Letters, vol. 113, no. 5, pp. 1–11, 2014.

  89. S.-F. Shi, T.-T. Tang, B. Zeng, L. Ju, Q. Zhou, A. Zettl, and F. Wang, Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating, Nano Letters, vol. 14, no. 3, pp. 1578–1582, 2014.

  90. B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, and H.G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nature Communications, vol. 3, p. 780, 2012.

  91. N. Papasimakis, S. Thongrattanasiri, N.I. Zheludev, and F. Garci̇a, de Abajo, The magnetic response of graphene split-ring metamaterials, Light: Science & Applications, vol. 2, no. 7, p. e78, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibraheem Al-Naib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Naib, I., Withayachumnankul, W. Recent Progress in Terahertz Metasurfaces. J Infrared Milli Terahz Waves 38, 1067–1084 (2017). https://doi.org/10.1007/s10762-017-0381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0381-2

Keywords

Navigation