Skip to main content

Advertisement

Log in

Testosterone and Immune Function in Primates: A Brief Summary with Methodological Considerations

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The endocrine system serves as a mediator by which the body integrates environmental cues to organize physiological alterations, including changes in immunocompetence. Hormones are central mechanisms that contribute to the onset and timing of key life history events, the allocation of time and energy between competing functions, and in general modulate phenotypic development and variation. Here we provide a very brief review of testosterone and immunity, which highlights the physiological costs that elevated testosterone levels can incur as a result of reproductive investments. We focus primarily on nonhuman primates where possible. Although there is substantial evidence that testosterone exerts some influences on immune responses, results from in vivo studies involving human and nonhuman primates have yielded equivocal results regarding such immunomodulatory actions. There may be several reasons for this, including variation in study design, immunological measures used, levels of other hormones present, host energy status, and even social conditions. We therefore review some of these potential methodological issues, concluding that increased care must be taken to analyze seasonal variability in energy budgets, to collect an adequate number of samples from known individuals, to account for status in the dominance hierarchy when applicable, and to use multiple measures of immunity. We must also seek to understand the collaborative effects of multiple hormones (particularly dehydroepiandrosterone and estradiol) with relation to their downstream immunological effects, assessing both individual and multiplicative actions in both males and females. Such efforts would benefit from the development of additional noninvasive immune measures for primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abebe, F., Birkeland, K. I., Gaarder, P. I., Petros, B., & Gundersen, S. G. (2003). The relationships between dehydroepiandrosterone sulphate (DHEAS), the intensity of Schistosoma mansoni infection and parasite-specific antibody responses. A cross-sectional study in residents of endemic communities in north-east Ethiopia. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 111(2), 319–328.

    CAS  Google Scholar 

  • Abrams, E. T., & Miller, E. M. (2011). The roles of the immune system in women's reproduction: evolutionary constraints and life history trade-offs. American Journal of Physical Anthropology, 146(S53), 134–154.

    PubMed  Google Scholar 

  • Alberts, S. C., Sapolsky, R. M., & Altmann, J. (1992). Behavioral, endocrine, and immunological correlates of immigration by an aggressive male into a natural primate group. Hormones and Behavior, 26(2), 167–178.

    CAS  PubMed  Google Scholar 

  • Archie, E. A., Altmann, J., & Alberts, S. C. (2012). Social status predicts wound healing in wild baboons. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 9017–9022.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arlet, M. E., Kaasik, A., Molleman, F., Isabell, L., Carey, J. R., & Mand, R. (2011). Social factors increase fecal testosterone levels in wild male gray-cheeked mangabeys (Lophocebus albigena). Hormones and Behavior, 59, 605–611.

    CAS  PubMed  Google Scholar 

  • Asaba, K., Iwasaki, Y., Yoshida, M., Asai, M., Oiso, Y., Murohara, T., & Hashimoto, K. (2004). Attenuation by reactive oxygen species of glucocorticoid suppression on proopiomelanocortin gene expression in pituitary corticotroph cells. Endocrinology, 145, 39–42.

    CAS  PubMed  Google Scholar 

  • Athreya, B. H., Pletcher, J., Zulian, F., Weiner, D. B., & Williams, W. V. (1993). Subset-specific effects of sex hormones and pituitary gonadotropins on human lymphocyte proliferation in vitro. Clinical Immunology and Immunopathology, 66(3), 201–211.

    CAS  PubMed  Google Scholar 

  • Auci, D., Kaler, L., Subramanian, S., Huang, Y., Frincke, J., Reading, C., & Offner, H. (2007). A new orally bioavailable synthetic androstene inhibits collagen-induced arthritis in the mouse: Androstene hormones as regulators of regulatory T cells. Annals of the New York Academy of Sciences, 1110, 630–640.

    CAS  PubMed  Google Scholar 

  • Barnard, C. J., & Behnke, J. M. (2001). From psychoneuroimmunology to ecological immunology: Life history strategies and immunity trade-offs. In R. Ader, D. L. Felton, & N. Cohen (Eds.), Psychoneuroimmunology (pp. 35–47). San Diego: Academic Press.

    Google Scholar 

  • Beehner, J. C., Bergman, T. J., Cheney, D. L., Seyfarth, R. M., & Whitten, P. L. (2006). Testosterone predicts future dominance rank and mating activity among male chacma baboons. Behavioral Ecology and Sociobiology, 59, 469–479.

    Google Scholar 

  • Ben-Nathan, D., Lustig, S., Kobiler, D., Danenberg, H. D., Lupu, E., & Feuerstein, G. (1992). Dehydroepiandrosterone protects mice inoculated with West Nile virus and exposed to cold stress. Journal of Medical Virology, 38, 159–166.

    CAS  PubMed  Google Scholar 

  • Bentley, G. R., Harrigan, A. M., Campbell, B., & Ellison, P. T. (1993). Seasonal effects on salivary testosterone levels among Lese males of the Ituri Forest, Zaire. American Journal of Human Biology, 5, 711–717.

    Google Scholar 

  • Bergman, T. J., Beehner, J. C., Cheney, D. L., Seyfarth, R. M., & Whitten, P. L. (2005). Correlates of stress in free-ranging male chacma baboons, Papio hamadryas ursinus. Animal Behaviour, 70, 703–713.

    Google Scholar 

  • Bergman, T. J., Beehner, J. C., Cheney, D. L., Seyfarth, R. M., & Whitten, P. L. (2006). Interactions in male baboons: the importance of both males' testosterone. Behavioral Ecology and Sociobiology, 59(4), 480–489.

    Google Scholar 

  • Bernstein, R. M., Leigh, S. R., Donovan, S. M., & Monaco, M. H. (2008). Hormonal correlates of ontogeny in baboons (Papio hamadryas anubis) and mangabeys (Cercocebus atys). American Journal of Physical Anthropology, 136, 156–168.

    PubMed  Google Scholar 

  • Brabin, L. (1990). Sex differentials in susceptibility to lymphatic filariasis and implications for maternal child immunity. Epidemiology and Infection, 105(2), 335–353.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bribiescas, R. G. (2001). Reproductive ecology and life history of the human male. Yearbook of Physical Anthropology, 33, 148–176.

    Google Scholar 

  • Bribiescas, R. G., & Ellison, P. T. (2008). How hormones mediate tradeoffs in human health and disease. In S. C. Stearns & J. C. Koella (Eds.), Evolution in health and disease (2nd ed., pp. 77–94). New York: Oxford University Press.

    Google Scholar 

  • Bribiescas, R. G., & Muehlenbein, M. P. (2010). Evolutionary endocrinology. In M. P. Muehlenbein (Ed.), Human evolutionary biology (pp. 127–143). New York: Cambridge University Press.

    Google Scholar 

  • Campbell, B. C., Lukas, W. D., & Campbell, K. L. (2001). Reproductive ecology of male immune function and gonadal function. In P. T. Ellison (Ed.), Reproductive ecology and human evolution (pp. 159–178). New York: Aldine de Gruyter.

    Google Scholar 

  • Casson, P. R., Andersen, R. N., Herrod, H. G., Stentz, F. B., Straughn, A. B., Abraham, G. E., & Buster, J. E. (1993). Oral dehydroepiandrosterone in physiologic doses modulates immune function in postmenopausal women. American Journal of Obstetrics and Gynecology, 169(6), 1536–1539.

    CAS  PubMed  Google Scholar 

  • Castracane, V. D., Cutler, G. B., & Loriaux, D. L. (1981). Pubertal endocrinology of the baboon: adrenarche. American Journal of Physiology, 241, E305–309.

    CAS  PubMed  Google Scholar 

  • Chao, T. C., Van Alten, P. J., Greager, J. A., & Walter, R. J. (1995). Steroid sex hormones regulate the release of tumor necrosis factor by macrophages. Cellular Immunology, 160(1), 43–49.

    CAS  PubMed  Google Scholar 

  • Chao, T. C., Van Alten, P. J., & Walter, R. J. (1994). Steroid sex hormones and macrophage function: modulation of reactive oxygen intermediates and nitrite release. American Journal of Reproductive Immunology, 32(1), 43–52.

    CAS  PubMed  Google Scholar 

  • Chapman, C. A., Wasserman, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J., Saj, T. L., & Ziegler, T. E. (2006). Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131, 525–534.

    PubMed  Google Scholar 

  • Claus, M., Greil, J., & Watzl, C. (2009). Comprehensive analysis of NK cell function in whole blood samples. Journal of Immunology Methods, 341(1–2), 154–164.

    CAS  Google Scholar 

  • Coe, C. L., Kramer, M., Kirschbaum, C., Netter, P., & Fuchs, E. (2002). Prenatal stress diminishes the cytokine response of leukocytes to endotoxin stimulation in juvenile rhesus monkeys. Journal of Clinical Endocrinology and Metabolism, 87, 675–681.

    CAS  PubMed  Google Scholar 

  • Cohen, S., Line, S., Manuck, S. B., Rabin, B. S., Heise, E. R., & Kaplan, J. R. (1997). Chronic social stress, social status, and susceptibility to upper respiratory infections in nonhuman primates. Psychosomatic Medicine, 59, 213–221.

    CAS  PubMed  Google Scholar 

  • Coles, A. J., Thompson, S., Cox, A. L., Curran, S., Gurnell, E. M., & Chatterjee, V. K. (2005). Dehydroepiandrosterone replacement in patients with Addison's disease has a bimodal effect on regulatory (CD4+CD25hi and CD4+FoxP3+) T cells. European Journal of Immunology, 35(12), 3694–3703.

    CAS  PubMed  Google Scholar 

  • Cunnick, J. E., Cohen, S., Rabin, B. S., Carpenter, A. B., Manuck, S. B., & Kaplan, J. R. (1991). Alterations in specific antibody production due to rank and social instability. Brain, Behavior, and Immunity, 5, 357–369.

    CAS  PubMed  Google Scholar 

  • Curno, O., Reader, T., McElligott, A. G., Behnke, J. M., & Barnard, C. J. (2011). Infection before pregnancy affects immunity and response to social challenge in the next generation. Philosophical Transactions of the Royal Society B, 366, 3364–3374.

    CAS  Google Scholar 

  • Cutolo, M., Capellino, S., Sulli, A., Serioli, B., Secchi, M. E., Villaggio, B., & Straub, R. H. (2006). Estrogens and autoimmune diseases. Annals of the New York Academy of Sciences, 1089, 538–547.

    CAS  PubMed  Google Scholar 

  • Daynes, R. A., Dudley, D. J., & Araneo, B. A. (1990). Regulation of murine lymphokine production in vivo. II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. European Journal of Immunology, 20(4), 793–802.

    CAS  PubMed  Google Scholar 

  • Daynes, R. A., Meikle, A. W., & Araneo, B. A. (1991). Locally active steroid hormones may facilitate compartmentalization of immunity by regulating the types of lymphokines produced by helper T cells. Research in Immunology, 142, 40–45.

    CAS  PubMed  Google Scholar 

  • Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P., & French, S. S. (2011). Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. Journal of Animal Ecology, 80(4), 710–730.

    PubMed  Google Scholar 

  • dos Santos, C. D., Toldo, M. P., & do Prado, J. C., Jr. (2005). Trypanosoma cruzi: the effects of dehydroepiandrosterone (DHEA) treatment during experimental infection. Acta Tropica, 95, 109–115.

    PubMed  Google Scholar 

  • Eley, R. M., Strum, S. C., Muchemi, G., & Reid, G. D. F. (1989). Nutrition, body condition, activity patterns, and parasitism of free-ranging troops of olive baboons (Papio anubis) in Kenya. American Journal of Primatology, 18, 209–219.

    Google Scholar 

  • Ellison, P. T., & Panter-Brick, C. (1996). Salivary testosterone levels among Tamang and Kami males of central Nepal. Human Biology, 68, 955–965.

    CAS  PubMed  Google Scholar 

  • Engeland, C. G., Sabzehei, B., & Marucha, P. T. (2009). Sex hormones and mucosal wound healing. Brain, Behavior, and Immunity, 23(5), 629–635.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falus, A., Feher, K. G., Walcz, E., Brozik, M., Fust, G., Hidvegi, T., Feher, T., & Meretey, K. (1990). Hormonal regulation of complement biosynthesis in human cell lines–I. Androgens and gamma-interferon stimulate the biosynthesis and gene expression of C1 inhibitor in human cell lines U937 and HepG2. Molecular Immunology, 27(2), 191–195.

    CAS  PubMed  Google Scholar 

  • Ferrer, J. F., Jonsson, C. B., Esteban, E., Galligan, D., Basombrio, M. A., Peralta-Ramos, M., Bharadwaj, M., Torrez-Martinez, N., Callahan, J., Segovia, A., & Hjelle, B. (1998). High prevalence of hantavirus infection in Indian communities of the Paraguayan and Argentinean Gran Chaco. American Journal of Tropical Medicine and Hygiene, 59(3), 438–444.

    CAS  PubMed  Google Scholar 

  • FitzGerald, L. Z., Robbins, W. A., Kesner, J. S., & Xun, L. (2012). Reproductive hormones and interleukin-6 in serious leisure male athletes. European Journal of Applied Physiology, 112, 3765–3773.

    CAS  PubMed  Google Scholar 

  • Folstad, I., & Karter, A. J. (1992). Parasites, bright males, and the immunocompetence handicap. American Naturalist, 139(3), 603–622.

    Google Scholar 

  • Froebel, K. S., Pakker, N. G., Aluti, F., Bofill, M., Choremi-Papadopoulou, H., Economidou, J., Rabian, C., Roos, M. T., Ryder, L. P., Miedema, F., & Raab, G. M. (1999). Standardization and quality assurance of lymphocyte proliferation assays for use in the assessment of immune function. Journal of Immunological Methods, 227(1–2), 85–97.

    CAS  PubMed  Google Scholar 

  • Gettler, L. T., McDade, T. W., Agustin, S. S., Feranil, A. B., & Kuzawa, C. W. (2014). Testosterone, immune function, and life history transitions in Filipino males (Homo sapiens). International Journal of Primatology. doi:10.1007/s10764-014-9749-5.

  • Gilliver, S. C., Ashworth, J. J., & Ashcroft, G. S. (2007). The hormonal regulation of cutaneous wound healing. Clinics in Dermatology, 25(1), 56–62.

    PubMed  Google Scholar 

  • Giltay, E. J., Fonk, J. C., von Blomberg, B. M., Drexhage, H. A., Schalkwijk, C., & Gooren, L. J. (2000). In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. Journal of Clinical Endocrinology and Metabolism, 85, 1648–1657.

    CAS  PubMed  Google Scholar 

  • Granger, D. A., Booth, A., & Johnson, D. R. (2000). Human aggression and enumerative measures of immunity. Psychosomatic Medicine, 62(4), 583–590.

    CAS  PubMed  Google Scholar 

  • Griffin, J. E., & Ojeda, S. R. (2004). Textbook of endocrine physiology. Oxford: Oxford University Press.

    Google Scholar 

  • Grossman, C. J., Roselle, G. A., & Mendenhall, C. L. (1991). Sex steroid regulation of autoimmunity. Journal of Steroid Biochemistry and Molecular Biology, 40(4–6), 649–659.

    CAS  PubMed  Google Scholar 

  • Guerra-Silveira, F., & Abad-Franch, A. (2013). Sex bias in infectious disease epidemiology: patterns and processes. PLoS ONE, 8(4), e62390.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hausfater, G., & Watson, D. F. (1976). Social and reproductive correlates of parasite ova emissions by baboons. Nature, 262, 688–689.

    CAS  PubMed  Google Scholar 

  • Hearing, S. D., Norman, M., Smyth, S., Foy, C., & Dayan, C. M. (1999). Wide variation in lymphocyte steroid sensitivity among healthy human volunteers. Journal of Clinical Endocrinology and Metabolism, 84(11), 4149–4154.

    CAS  PubMed  Google Scholar 

  • Janeway, C., Travers, P., Walport, M., & Shlomchik, M. (2005). Immunobiology: The Immune System in Health and Disease (6th ed.). New York: Garland Science.

    Google Scholar 

  • Kanda, N., & Tamaki, K. (1999). Estrogen enhances immunoglobulin production by human PBMCs. Journal of Allergy and Clinical Immunology, 103(2 Pt 1), 282–288.

    CAS  PubMed  Google Scholar 

  • Kazura, J. W., Spark, R., Forsyth, K., Brown, G., Heywood, P., Peters, P., & Alpers, M. (1984). Parasitologic and clinical features of bancroftian filariasis in a community in East Sepik Province, Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 33(6), 1119–1123.

    CAS  PubMed  Google Scholar 

  • Klein, S. L. (2000). The effects of hormones on sex differences in infection: from genes to behavior. Neuroscience and Biobehavioral Reviews, 24(6), 627–638.

    CAS  PubMed  Google Scholar 

  • Kramer, T. R., Moore, R. J., Shippee, R. L., Friedl, K. E., Martinez-Lopez, L., Chan, M. M., & Askew, E. W. (1997). Effects of food restriction in military training on T-lymphocyte responses. International Journal of Sports Medicine, 18, S84–90.

    CAS  PubMed  Google Scholar 

  • Kurtis, J. D., Friedman, J. F., Leenstra, T., Langdon, G. C., Wu, H. W., Manalo, D. L., Su, L., Jiz, M., Jarilla, B., Pablo, A. O., McGarvey, S. T., Olveda, R. M., & Acosta, L. P. (2006). Pubertal development predicts resistance to infection and reinfection with Schistosoma japonicum. Clinical Infectious Diseases, 42(12), 1692–1698.

    CAS  PubMed  Google Scholar 

  • Kurtis, J. D., Mtalib, R., Onyango, F. K., & Duffy, P. E. (2001). Human resistance to Plasmodium falciparum increases during puberty and is predicted by dehydroepiandrosterone sulfate levels. Infection and Immunity, 69(1), 123–128.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang, T. J. (2004). Estrogen as an immunomodulator. Clinical Immunology, 113(3), 224–230.

    CAS  PubMed  Google Scholar 

  • Lassek, W. D., & Gaulin, S. J. C. (2009). Costs and benefits of fat-free muscle mass in men: relationship to mating success, dietary requirements, and native immunity. Evolution and Human Behavior, 30, 322–328.

    Google Scholar 

  • Leenstra, T., ter Kuile, F. O., Kariuki, S. K., Nixon, C. P., Oloo, A. J., Kager, P. A., & Kurtis, J. D. (2003). Dehydroepiandrosterone sulfate levels associated with decreased malaria parasite density and increased hemoglobin concentration in pubertal girls from western Kenya. Journal of Infectious Diseases, 188(2), 297–304.

    CAS  PubMed  Google Scholar 

  • Liebl, A. L., & Martin, L. B. (2009). Simple quantification of blood plasma antimicrobial capacity using spectrophotometry. Functional Ecology, 23(6), 1091–1096.

    Google Scholar 

  • Lennartsson, A. K., Kushnir, M. M., Bergquist, J., & Jonsdottir, I. H. (2012). DHEA and DHEA-S response to acute psychosocial stress in healthy men and women. Biological Psychiatry, 90(2), 143–149.

    Google Scholar 

  • Lockmiller, R. L., & Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos, 88, 87–98.

    Google Scholar 

  • Mayer, M. M. (1948). Complement and fixation. In E. A. Kabat & M. M. Mayer (Eds.), Experimental immunochemistry (pp. 100–112). Springfield: Charles C. Thomas.

    Google Scholar 

  • McEwen, B. S., Biron, C. A., Brunson, K. W., Bulloch, K., Chambers, W. H., Dhabhar, F. S., Goldfarb, R. H., Kitson, R. P., Miller, A. H., Spencer, R. L., & Weiss, J. M. (1997). The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Research. Brain Research Reviews, 23(1–2), 79–133.

    CAS  PubMed  Google Scholar 

  • McLachlan, J. A., Serkin, C. D., & Bakouche, O. (1996). Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity. Journal of Immunology, 156(1), 328–335.

    CAS  Google Scholar 

  • Mehlman, P. T., Higley, J. D., Fernald, B. J., Sallee, F. R., Suomi, S. J., & Linnoila, M. (1997). CSF 5–HIAA, testosterone, and sociosexual behaviors in free-ranging male rhesus macaques in the mating season. Psychiatry Research, 72, 89–201.

    CAS  PubMed  Google Scholar 

  • Millet, S., Bennett, J., Lee, K. A., Hau, M., & Klasing, K. C. (2007). Quantifying and comparing constitutive immunity across avian species. Developmental and Comparative Immunology, 31(2), 188–201.

    CAS  PubMed  Google Scholar 

  • Moore, S. L., & Wilson, K. (2002). Parasites as a viability cost of sexual selection in natural populations of mammals. Science, 297(5589), 2015–2018.

    CAS  PubMed  Google Scholar 

  • Muehlenbein, M. P. (2005). Parasitological analyses of the male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. American Journal of Primatology, 65(2), 167–179.

    PubMed  Google Scholar 

  • Muehlenbein, M. P. (2006). Intestinal parasite infections and fecal steroid levels in wild chimpanzees. American Journal of Physical Anthropology, 130, 546–550.

    PubMed  Google Scholar 

  • Muehlenbein, M. P. (2008). Adaptive variation in testosterone levels in response to immune activation: empirical and theoretical perspectives. Social Biology, 53, 13–23.

    Google Scholar 

  • Muehlenbein, M. P. (2009). The application of endocrine measures in primate parasite ecology. In M. A. Huffman & C. A. Chapman (Eds.), Primate parasite ecology: The dynamics of host-parasite relationships (pp. 63–81). New York: Cambridge University Press.

    Google Scholar 

  • Muehlenbein, M. P., Alger, J., Cogswell, F., James, M., & Krogstad, D. (2005). The reproductive endocrine response to Plasmodium vivax infection in Hondurans. American Journal of Tropical Medicine and Hygiene, 73(1), 178–187.

    CAS  PubMed  Google Scholar 

  • Muehlenbein, M. P., & Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17(5), 527–558.

    PubMed  Google Scholar 

  • Muehlenbein, M. P., & Bribiescas, R. G. (2010). Male reproduction: Physiology, behavior and ecology. In M. P. Muehlenbein (Ed.), Human evolutionary biology (pp. 351–375). New York: Cambridge University Press.

    Google Scholar 

  • Muehlenbein, M. P., Cogswell, F. B., James, M. A., Koterski, J., & Ludwig, G. V. (2006). Testosterone correlates with Venezuelan equine encephalitis virus infection in macaques. Virology Journal, 3, 19–27.

    PubMed Central  PubMed  Google Scholar 

  • Muehlenbein, M. P., & Flinn, M. V. (2011). Patterns and processes of human life history evolution. In T. Flatt & A. Heyland (Eds.), Mechanisms of life history evolution (pp. 153–168). New York: Oxford University Press.

    Google Scholar 

  • Muehlenbein, M. P., Hirschtick, J. L., Bonner, J. Z., & Swartz, A. M. (2010). Toward quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. American Journal of Human Biology, 22(4), 546–556.

    PubMed  Google Scholar 

  • Muehlenbein, M. P., & Lewis, C. M. (2013). Health assessment and epidemiology. In E. Sterling, N. Bynum, & M. Blair (Eds.), Primate ecology and conservation: A handbook of techniques (pp. 40–57). New York: Oxford University Press.

    Google Scholar 

  • Muehlenbein, M. P., Prall, S. P., & Chester, E. (2011). Development of a noninvasive salivary measure of functional immunity in humans. American Journal of Human Biology, 23(2), 267–268.

    Google Scholar 

  • Muehlenbein, M. P., & Watts, D. P. (2010). The costs of dominance: testosterone, cortisol and intestinal parasites in wild male chimpanzees. BioPsychoSocial Medicine, 4, 21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muehlenbein, M. P., Watts, D. P., & Whitten, P. L. (2004). Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. American Journal of Primatology, 64(1), 71–82.

    PubMed  Google Scholar 

  • Muller, M. N., & Wrangham, R. W. (2004). Dominance, aggression, and testosterone in wild chimpanzees: a test of the “challenge hypothesis. Animal Behaviour, 67, 113–123.

    Google Scholar 

  • Muller-Graf, C. D., Collins, D. A., Packer, C., & Woolhouse, M. E. (1997). Schistosoma mansoni infection in a natural population of olive baboons (Papio cynocephalus anubis) in Gombe Stream National Park, Tanzania. Parasitology, 115(Pt 6), 621–627.

    PubMed  Google Scholar 

  • Muller-Graf, C. D., Collins, D. A., & Woolhouse, M. E. (1996). Intestinal parasite burden in five troops of olive baboons (Papio cynocephalus anubis) in Gombe Stream National Park, Tanzania. Parasitology, 112(Pt 5), 489–497.

    PubMed  Google Scholar 

  • Nadler, R. D., Wallis, J., Roth-Meyer, C., Cooper, R. W., & Baulieu, E. E. (1987). Hormones and behavior of prepubertal and peripubertal chimpanzees. Hormones and Behavior, 21(1), 118–131.

    CAS  PubMed  Google Scholar 

  • Nilsson, C., Larsson, B., Jennische, E., Eriksson, E., Bjorntorp, P., York, D. A., & Holmang, A. (2001). Maternal endotoxemia results in obesity and insulin resistance in adult male offspring. Endocrinology, 142(6), 2622–30.

    CAS  PubMed  Google Scholar 

  • Norris, K., & Evans, M. R. (2000). Ecological immunology: life history trade-offs and immune defense in birds. Behavioral Ecology, 11, 19–26.

    Google Scholar 

  • Nunn, C. L., & Altizer, S. M. (2006). Infectious diseases in primates: behavior, ecology and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Nunn, C. L., Lindenfors, P., Pursall, E. R., & Rolff, J. (2009). On sexual dimorphism in immune function. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 61–69.

    Google Scholar 

  • Olsen, N. J., & Kovacs, W. J. (1996). Gonadal steroids and immunity. Endocrine Reviews, 17(4), 369–384.

    CAS  PubMed  Google Scholar 

  • Olsen, N. J., & Kovacs, W. J. (2001). Effects of androgens on T and B lymphocyte development. Immunologic Research, 23(2–3), 281–288.

    CAS  PubMed  Google Scholar 

  • Olsen, N. J., Watson, M. B., Henderson, G. S., & Kovacs, W. J. (1991). Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice. Endocrinology, 129(5), 2471–2476.

    CAS  PubMed  Google Scholar 

  • Ostner, J., Heistermann, M., & Schulke, O. (2008). Dominance, aggression and physiological stress in wild male Assamese macaques (Macaca assamensis). Hormones and Behavior, 54, 613–619.

    PubMed  Google Scholar 

  • Page, K. C., Sottas, C. M., & Hardy, M. P. (2001). Prenatal exposure to dexamethasone alters leydig cell steroidogenic capacity in immature and adult rats. Journal of Andrology, 22, 973–980.

    CAS  PubMed  Google Scholar 

  • Pettifer, H. L. (1984). The helminth fauna of the digestive tracts of chacma baboons, Papio ursinus, from different localities in the Transvaal. Onderstepoort Journal of Veterinary Research, 51(3), 161–170.

    CAS  PubMed  Google Scholar 

  • Poulin, R. (1996). Helminth growth in vertebrate hosts: does host sex matter? International Journal of Parasitology, 26(11), 1311–1315.

    CAS  PubMed  Google Scholar 

  • Powell, J. M., & Sonnenfeld, G. (2006). The effects of dehydroepiandrosterone (DHEA) on in vitro spleen cell proliferation and cytokine production. Journal of Interferon and Cytokine Research, 26(1), 34–39.

    CAS  PubMed  Google Scholar 

  • Prall, S., Blanchard, S., Hurst, D., Ireland, E., Lewis, C., Martinez, L., Rich, A., Singh, E., Taboas, C., & Muehlenbein, M. P. (2011). Salivary measures of testosterone and functional innate immunity are directly associated in a sample of healthy young adults. American Journal of Physical Anthropology, S52, 243.

    Google Scholar 

  • Prall, S., & Muehlenbein, M. P. (2011). The ratio of salivary testosterone to dehydroepiandrosterone changes throughout recovery from respiratory tract infections in men: implications for understanding hormone-mediated immunity. American Journal of Human Biology, 23(2), 272.

    Google Scholar 

  • Rantala, M. J., Moore, F. R., Skrinda, I., Krama, T., Kivleniece, I., Kecko, S., & Krams, I. (2012). Evidence for the stress-linked immunocompetence handicap hypothesis in humans. Nature Communications, 3, 694.

    PubMed  Google Scholar 

  • Rolff, J. (2002). Bateman’s principle and immunity. Proceedings of the Royal Society of London. Series B, 269(1493), 867–872.

    PubMed Central  PubMed  Google Scholar 

  • Röjdmark, S. (1987). Influence of short-term fasting on the pituitary-testicular axis in normal men. Hormone Research, 25, 140–6.

    PubMed  Google Scholar 

  • Rose, R. M., Berstein, I. S., & Gordon, T. P. (1975). Consequences of social conflict on plasma testosterone levels in rhesus monkeys. Psychosomatic Medicine, 37(1), 50–61.

    CAS  PubMed  Google Scholar 

  • Sachdeva, N., & Asthana, D. (2007). Cytokine quantitation: technologies and applications. Frontiers in Bioscience, 12, 4682–95.

    CAS  PubMed  Google Scholar 

  • Sakakura, Y., Nakagawa, Y., & Ohzeki, T. (2006). Differential effect of DHEA on mitogen-induced proliferation of T and B lymphocytes. Journal of Steroid Biochemistry and Molecular Biology, 99(2–3), 115–120.

    CAS  PubMed  Google Scholar 

  • Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science, 308(5722), 648–652.

    CAS  PubMed  Google Scholar 

  • Sapolsky, R. M., & Spencer, E. M. (1997). Insulin-like growth factor I is suppressed in socially subordinate male baboons. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 273, 1346–1351.

    Google Scholar 

  • Schapiro, S. J., Nehete, P. N., Perlman, J. E., Bloomsmith, M. A., & Sastry, K. J. (1989). Effects of dominance status and environmental enrichment on cell-mediated immunity in rhesus macaques. Applied Animal Behaviour Science, 56, 319–332.

    Google Scholar 

  • Schmid-Hempel, P. (2003). Variation in immune defense as a question of evolutionary ecology. Proceedings of the Royal Society of London B, 270, 357–366.

    Google Scholar 

  • Setchell, J. M., Smith, T., Wickings, E. J., & Knapp, L. A. (2010). Stress, social behaviour, and secondary sexual traits in a male primate. Hormones and Behavior, 58, 720–8.

    CAS  PubMed  Google Scholar 

  • Sheldon, B. C., & Verhulst, S. (1996). Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends in Ecology & Evolution, 11, 317–321.

    CAS  Google Scholar 

  • Sinclair, J. A., & Lochmiller, R. L. (2000). The winter immunoenhancement hypothesis: associations among immunity, density, and survival in prairie vole (Microtus ochrogaster) populations. Canadian Journal of Zoology, 78(2), 254–264.

    Google Scholar 

  • Sobolewski, M. E., Brown, J. L., & Mitani, J. C. (2013). Female parity, male aggression, and the challenge hypothesis in wild chimpanzees. Primates, 54, 81–88.

    PubMed  Google Scholar 

  • Spratt, D. I., Cox, P., Orav, J., Moloney, J., & Bigos, T. (1993). Reproductive axis suppression in acute illness is related to disease severity. Journal of Clinical Endocrinology and Metabolism, 76, 1548–1554.

    CAS  PubMed  Google Scholar 

  • Stear, M. J., Bairden, K., Bishop, S. C., Duncan, J. L., Karimi, S. K., McKellar, Q. A., & Murray, M. (1995). Different patterns of faecal egg output following infection of Scottish blackface lambs with Ostertagia circumcincta. Veterinary Parasitology, 59, 29–38.

    CAS  PubMed  Google Scholar 

  • Stoner, K. E. (1996). Prevalence and intensity of intestinal parasites in mantled howling monkeys (Alouatta palliata) in northeastern Costa Rica: implications for conservation biology. Conservation Biology, 10, 539–546.

    Google Scholar 

  • Straub, R. H., & Cutolo, M. (2001). Involvement of the hypothalamic-pituitary-adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis: viewpoint based on a systemic pathogenetic role. Arthritis and Rheumatism, 44, 493–507.

    CAS  PubMed  Google Scholar 

  • Suzuki, T., Suzuki, N., Daynes, R. A., & Engleman, E. G. (1991). Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T cells. Clinical Immunology and Immunopathology, 61(2 Pt 1), 202–211.

    CAS  PubMed  Google Scholar 

  • Tang, Y. J., Lee, W. J., Chen, Y. T., Liu, P. H., Lee, M. C., & Sheu, W. H. (2007). Serum testosterone level and related metabolic factors in men over 70 years old. Journal of Endocrinological Investigation, 30(6), 451–458.

    CAS  PubMed  Google Scholar 

  • Trumble, B. C., Brindle, E., Kupsik, M., & O’Connor, K. A. (2010). Responsiveness of the reproductive axis to a single missed evening meal in young adult males. American Journal of Human Biology, 22, 775–781.

    PubMed Central  PubMed  Google Scholar 

  • Tung, J., Barreiro, L. B., Johnson, Z. P., Hansen, K. D., Michopoulos, V., Toufexis, D., Michelini, K., Wilson, M. E., & Gilad, Y. (2012). Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proceedings of the National Academy of Sciences of the United States of America, 109, 6490–6495.

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Anders, S. M. (2010). Gonadal steroids and salivary IgA in healthy young women and men. American Journal of Human Biology, 22(3), 348–352.

    PubMed  Google Scholar 

  • Vina, J., Sastre, J., Pallardo, F. V., Gambini, J., & Borras, C. (2006). Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radical Research, 40, 1359–1365.

    CAS  PubMed  Google Scholar 

  • Webster, M., Libranda-Ramirez, B. D., Aligui, G. D., Olveda, R. M., Ouma, J. H., Kariuki, H. C., Kimani, G., Olds, G. R., Fulford, A. J., Butterworth, A. E., & Dunne, D. W. (1997). The influence of sex and age on antibody isotype responses to Schistosoma mansoni and Schistosoma japonicum in human populations in Kenya and the Philippines. Parasitology, 114(Pt 4), 383–393.

    PubMed  Google Scholar 

  • Weinberg, A., Betensky, R. A., Zhang, L., & Ray, G. (1998). Effect of shipment, storage, anticoagulant, and cell separation on lymphocyte proliferation assays for human immunodeficiency virus-infected patients. Clinical and Diagnostic Laboratory Immunology, 5(6), 804–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wedekind, C., & Folstad, I. (1994). Adaptive or nonadaptive immunosuppression by sex-hormones. American Naturalist, 143(5), 936–938.

    Google Scholar 

  • Weinstein, Y., & Berkovich, Z. (1981). Testosterone effect on bone marrow, thymus, and suppressor T cells in the (NZB X NZW)F1 mice: its relevance to autoimmunity. Journal of Immunology, 126(3), 998–1002.

    CAS  Google Scholar 

  • Westneat, D. F., & Birkhead, T. R. (1998). Alternative hypotheses linking the immune system and mate choice for good genes. Proceedings of the Royal Society of London B: Biological Sciences, 265, 1065–1073.

    Google Scholar 

  • Wingfield, J. C., Henger, R. E., Duft, A. M., & Ball, G. F. (1990). The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist, 136, 829–846.

    Google Scholar 

  • Zambrano, E., Rodriguez-Gonzalez, G. L., Gusman, G., Garcia-Becerra, R., Boeck, L., Diaz, L., Menjivar, M., Larrea, F., & Nathanielsz, P. W. (2005). A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. Journal of Physiology, 563(1), 275–284.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziegler, T. E., & Wittwer, D. J. (2005). Fecal steroid research in the field and laboratory: improved methods for storage, transport, processing, and analysis. American Journal of Primatology, 67, 159–174.

    CAS  PubMed  Google Scholar 

  • Zohdy, S., Tecot, S., Wright, P., & Jernvall, J. (2012). Testing the immunocompetence handicap hypothesis (ICHH) in both sexes of wild brown mouse lemurs (Microcebus rufus). American Journal of Physical Anthropology, 147(S4), 310–311.

    Google Scholar 

Download references

Acknowledgments

We thank Alexander Georgiev and Melissa Emery Thompson for inviting us to contribute to this special issue. In addition, we thank Alex and two anonymous reviewers for their valuable comments to previous versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Muehlenbein.

Glossary

Androgen

Group of steroid hormones, including testosterone, utilizing specific receptors whose primary role includes the maintenance and development of male reproductive characteristics.

Antibody

Also known as immunogloublins, antibodies are crucial proteins in the immune system, which act by binding onto foreign molecules and instigating a cascade of immunological effects. There are several types, including IgA, which is primarily secreted into the oral cavity and other mucus membranes and binds to pathogens to prevent their attachment to the cell surface.

B cells

A specialized lymphocyte involved in the humoral branch of the immune system. When activated, B cells produce antibodies specific to a pathogen.

Bacterial killing assay

An in vitro assay of innate immune function, primarily related to complement proteins and various antimicrobials, where serum or saliva is cultured with a known quantity of bacteria.

Complement system

The complement system, a facet of innate immunity, is a system of plasma proteins that, when activated via several different pathways, result in immunological responses. These responses include phagocyte recruitment, increasing pathogen phagocytosis, and formation of a protein complex (membrane attack complex) that causes lysis of pathogens.

C-reactive protein

An inflammatory protein synthesized by the liver whose primary role is to signal for the removal of dead cells or pathogens.

Cortisol

A glucocorticoid produced by the adrenal gland whose primary role involves increasing plasma glucose, but also has anti-inflammatory properties and regulates immune function at several levels. Is a key component of normal stress responses.

Cytokines

Specialized protein messengers that act as signaling molecules for the immune system separated into various groups depending on function. Th-1 cytokines (pro-inflammatory) include tumor necrosis factor α (TNF-α), interferon γ (IFNγ), interleukin-1β (IL-1β), IL-2, IL-12, and others, and play a role in regulating cellular immunity. Th-2 cytokines (anti-inflammatory) are primarily involved in humoral immunity and include IL-4, IL-5, IL-6, IL-10, and others.

Dehydroepiandrosterone (DHEA)

An adrenal androgen (along with the sulfated version dehydroepiandrosterone-sulfate, or DHEA-S) whose primary role is as a precursor for the synthesis of other hormones.

Estradiol

More specifically, 17β-estradiol, is the most potent estrogen synthesized from the granulosa cells of the ovaries, whose primary role includes the development and maintenance of female reproductive physiology.

Hemolytic complement assay

An in vitro assay measuring the ability of the complement system (specifically the antibody-dependent pathway) to lyse sheep red blood cells.

Insulin-like growth factor 1 (IGF1)

A hormone produced by the liver stimulated by growth hormone, whose primary role is related to growth and development.

Lymphocyte

Specific white blood cells, including T and B cells, that play important roles in adaptive immune responses, including the release of cytokines and antibodies, and lysis of foreign cells or pathogens.

Lymphocyte proliferation assay

An assay measuring the functional ability of T and B cells to undergo mitosis in vitro in response to an exposure to a mitogen.

Lysozyme

An enzyme found in large quantities in mucous membranes that acts to rupture the cell walls of bacteria.

T cells

A specialized lymphocyte involved in cell-mediated immunity, with several different subtypes each with a different function. CD8 or cytotoxic T cells attach and destroy pathogens, CD4 or helper T cells secrete cytokines to aid in the maturation of other immunological cells, and regulatory T cells (Treg) act to suppress cell-mediated immunity after infection.

Testosterone

An androgen synthesized in the Leydig cells of the testes (as well as the adrenal glands), important in the development and maturation of secondary sexual characteristics, as well as in other various physiological systems including muscle anabolism and spermatogenesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prall, S.P., Muehlenbein, M.P. Testosterone and Immune Function in Primates: A Brief Summary with Methodological Considerations. Int J Primatol 35, 805–824 (2014). https://doi.org/10.1007/s10764-014-9752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-014-9752-x

Keywords

Navigation