Skip to main content
Log in

Carbon Aerogel-Based High-Temperature Thermal Insulation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Carbon aerogels, monolithic porous carbons derived via pyrolysis of porous organic precursors synthesized via the sol–gel route, are excellent materials for high-temperature thermal insulation applications both in vacuum and inert gas atmospheres. Measurements at 1773K reveal for the aerogels investigated thermal conductivities of 0.09W · m−1 · K−1 in vacuum and 0.12W · m−1 · K−1 in 0.1MPa argon atmosphere. Analysis of the different contributions to the overall thermal transport in the carbon aerogels shows that the heat transfer via the solid phase dominates the thermal conductivity even at high temperatures. This is due to the fact that the radiative heat transfer is strongly suppressed as a consequence of a high infrared extinction coefficient and the gaseous contribution is reduced since the average pore diameter of about 600nm is limiting the mean free path of the gas molecules in the pores at high temperatures. Based on the thermal conductivity data detected up to 1773K as well as specific extinction coefficients determined via infrared-optical measurements, the thermal conductivity can be extrapolated to 2773K yielding a value of only 0.14W· m−1 · K−1 in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pekala R.W.: J. Mater. Sci. 24(9), 3221 (1989)

    Article  ADS  Google Scholar 

  2. Bock V., Nilsson O., Blumm J., Fricke J.: J. Non-Cryst. Solids 185(3), 233 (1995)

    Article  ADS  Google Scholar 

  3. Hrubesh L.W., Pekala R.W.: J. Mater. Res. 9(3), 731 (1994)

    Article  ADS  Google Scholar 

  4. Lu X.P., Nilsson O., Fricke J., Pekala R.W.: J. Appl. Phys. 73(2), 581 (1993)

    Article  ADS  Google Scholar 

  5. Wiener M., Reichenauer G., Hemberger F., Ebert H.-P.: Int. J. Thermophys. 27(6), 1826 (2006)

    Article  Google Scholar 

  6. Proebstle H., Wiener M., Fricke J.: J. Porous. Mat. 10(4), 213 (2003)

    Article  Google Scholar 

  7. Fischer U., Saliger R., Bock V., Petricevic R., Fricke J.: J. Porous. Mat. 4, 281 (1997)

    Article  Google Scholar 

  8. Li W.C., Reichenauer G., Fricke J.: Carbon 40(15), 2955 (2002)

    Article  Google Scholar 

  9. Glora M., Wiener M., Peticevic R., Pröbstle H., Fricke J.: J. Non-Cryst. Solids 285(1–3), 283 (2001)

    Article  ADS  Google Scholar 

  10. Petricevic R., Glora M., Fricke J.: Carbon 39(6), 857 (2001)

    Article  Google Scholar 

  11. Fricke J.: High Temps. - High Press. 25, 379 (1993)

    Google Scholar 

  12. P. Debye, Vorträge uber die kinetische Theorie der Materie und der Elektrizitat (Teubner, Berlin, 1914)

    Google Scholar 

  13. Kaganer M.G.: Thermal Insulation in Cryogenic Engineering. IPST Press, Jerusalem, Israel (1969)

    Google Scholar 

  14. Reif F., Scott H.L.: Am. J. Phys. 66, 164 (1998)

    Article  ADS  Google Scholar 

  15. Wiener M., Reichenauer G., Scherb T., Fricke J.: J. Non-Cryst. Solids 350, 126 (2004)

    Article  ADS  Google Scholar 

  16. Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford Science Publications, Oxford (1995)

    Google Scholar 

  17. R. Siegel, J.R. Howell, Thermal Radiation heat transfer (McGraw-Hill Kogakushka, Ltd., Tokyo, 1972)

    Google Scholar 

  18. Brunauer S., Emmett P.H., Teller E.: J. Am. Chem. Soc. 60(2), 309 (1938)

    Article  ADS  Google Scholar 

  19. Gregg S.J., Sing K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, London (1982)

    Google Scholar 

  20. Hanzawa Y., Hatori H., Yoshizawa N., Yamada Y.: Carbon 40(4), 575 (2002)

    Article  Google Scholar 

  21. Touloukian Y.S., Liley P.E., Saxena S.C.: Thermal Conductivity - Nonmetallic Solids, vol. 2. Plenum Publishing Co., New York (1970)

    Google Scholar 

  22. Jackson J.D., Fox R.F.: Classical Electrodynamics, Am. J. Phys. 67, 841 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wiener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiener, M., Reichenauer, G., Braxmeier, S. et al. Carbon Aerogel-Based High-Temperature Thermal Insulation. Int J Thermophys 30, 1372–1385 (2009). https://doi.org/10.1007/s10765-009-0595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0595-1

Keywords

Navigation