Skip to main content

Advertisement

Log in

Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Accurate information on the temperature field and associated heat transfer rates is particularly important for proton exchange membrane fuel cells (PEMFC) and PEM electrolyzers. An important parameter in fuel cell and electrolyzer performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL) which is a solid porous medium. Usually, this parameter is introduced in modeling and performance analysis without taking into account the dependence of the GDL thermal conductivity λ (in W · m−1 · K−1) on mechanical compression. Nevertheless, mechanical stresses arising in an operating system can change significantly the thermal conductivity and heat exchange. Metrology allowing the characterization of the GDL thermal conductivity as a function of the applied mechanical compression has been developed in this study using the transient hot-wire technique (THW). This method is the best for obtaining standard reference data in fluids, but it is rarely used for thermal-conductivity measurements in solids. The experiments provided with Quintech carbon cloth indicate a strong dependence (up to 300%) of the thermal conductivity λ on the applied mechanical load. The experiments have been provided in the pressure range 0 < p < 8 MPa which corresponds to stresses arising in fuel cells. All obtained experimental results have been fitted by the equation λ = 0.9log(12p + 17)(1 − 0.4e−50p) with 9% uncertainty. The obtained experimental dependence can be used for correct modeling of coupled thermo/electro-mechanical phenomena in fuel cells and electrolyzers. Special attention has been devoted to justification of the main hypotheses of the THW method and for estimation of the possible influence of the contact resistances. For this purpose, measurements with a different number of carbon cloth layers have been provided. The conducted experiments indicate the independence of the measured thermal conductivity on the number of GDL layers and, thus, justify the robustness of the developed method and apparatus for this type of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vielstich, W., Lamm, A., Gasteiger, H.A. (eds): Handbook of Fuel Cell Fundamentals, Technology and Application. Wiley, Chichester, UK (2003)

    Google Scholar 

  2. Grigoriev S.A., Porembsky V.I., Fateev V.N.: Int. J. Hydrogen Energy 31, 171 (2006)

    Article  Google Scholar 

  3. Escribano S., Blachot J.F., Etheve M., Morin A., Mosdale R.: J. Power Sources 156, 8 (2006)

    Article  Google Scholar 

  4. Kleemann J., Finsterwalder F., Tillmetz W.: J. Power Sources 190, 92 (2009)

    Article  Google Scholar 

  5. Zong Y., Zhou B., Sobiesiak A.: J. Power Sources 161, 143 (2006)

    Article  Google Scholar 

  6. Wen C., Lin Y., Lu C.: J. Power Sources 189, 1100 (2009)

    Article  Google Scholar 

  7. Kandlikar S.G., Lu Z.: Appl. Therm. Eng. 29, 1276 (2009)

    Article  Google Scholar 

  8. Bograchev D., Gueguen M., Grandidier J.C., Martemianov S.: J. Power Sources 180, 393 (2008)

    Article  Google Scholar 

  9. Martemianov S., Gueguen M., Grandidier J.C., Bograchev D.: J. Appl. Fluid Mech. 2, 49 (2009)

    Google Scholar 

  10. Kusoglu A., Karlssona A.M., Santare M.H., Cleghorn S., Johnson W.B.: J. Power Sources 161, 987 (2006)

    Article  Google Scholar 

  11. Bograchev D., Gueguen M., Grandidier J.C., Martemianov S.: Int. J. Hydrogen Energy 33, 5703 (2008)

    Article  Google Scholar 

  12. Ge J., Higier A., Liu H.: J. Power Sources 159, 922 (2006)

    Article  Google Scholar 

  13. Zhou P., Wu C.W., Ma G.J.: J. Power Sources 163, 874 (2007)

    Article  Google Scholar 

  14. Zhang L., Liu Y., Shuxin Wang H.S., Zhou Y., Jack Hub S.: J. Power Sources 162, 1165 (2006)

    Article  Google Scholar 

  15. Zhou P., Wu C.W., Ma G.J.: J. Power Sources 159, 1115 (2006)

    Article  Google Scholar 

  16. Zhou P., Wu C.W.: J. Power Sources 170, 93 (2007)

    Article  Google Scholar 

  17. Cindrella L., Kannan A.M., Lin J.F., Saminathan K., Hoc Y., Lind C.W., Wertze J.: J. Power Sources 194, 146 (2009)

    Article  Google Scholar 

  18. Su Z.Y., Liu C.T., Chang H.P., Li C.H., Huang K.J., Sui P.C.: J. Power Sources 183, 182 (2008)

    Article  Google Scholar 

  19. Ramousse J., Didierjean S., Lottin O., Maillet D.: Int. J. Therm. Sci. 47, 1 (2008)

    Article  Google Scholar 

  20. Karimi G., Li X., Teertstra P.: J. Electrochim. Acta 55, 1619 (2010)

    Article  Google Scholar 

  21. Djilali N., Lu D.: Int. J. Therm. Sci. 41, 29 (2002)

    Article  Google Scholar 

  22. Vie P.J.S., Kjelstrup S.: J. Electrochim. Acta 49, 1069 (2004)

    Article  Google Scholar 

  23. Nguyen P.T., Berning T., Djilali N.: J. Power Sources 130, 149 (2004)

    Article  Google Scholar 

  24. Ju H., Meng H., Wang C.Y.: Int. J. Heat Mass Transf. 48, 1303 (2005)

    Article  MATH  Google Scholar 

  25. Khandelwal M., Mench M.M.: J. Power Sources 161, 1106 (2006)

    Article  Google Scholar 

  26. Toray Industries Inc., Toray Carbon Paper, Toray Industries Inc., Advanced Composites Department (2001)

  27. Healy J.J., De Groot J.J., Kestin J.: Physica C (Amsterdam) 82, 392 (1976)

    Article  Google Scholar 

  28. Nagasaka Y., Nagashima A.: J. Phys. E: Sci. Instrum. 14, 1435 (1981)

    Article  ADS  Google Scholar 

  29. Alloush A., Gosney W.B., Wakeham W.A.: Int. J. Thermophys. 3, 225 (1982)

    Article  ADS  Google Scholar 

  30. Perkins R.A., Ramires M.L.V., Nieto De Castro C.A.: J. Res. Natl. Inst. Stand. Technol. 105, 221 (2000)

    Article  Google Scholar 

  31. Beirao S.G.S., Ramires M.L.V., Dix M., Nieto De Castro C.A.: Int. J. Thermophys. 27, 1018 (2006)

    Article  ADS  Google Scholar 

  32. Bilek J., Atkinson J., Wakeham W.A.: Int. J. Thermophys. 27, 1626 (2006)

    Article  ADS  Google Scholar 

  33. Bilek J., Atkinson J., Wakeham W.A.: Int. J. Thermophys. 28, 496 (2007)

    Article  ADS  Google Scholar 

  34. Garnier J.P., Maye J.P., Saillard J., Thévenot G., Kadjo A., Martemianov S.: Int. J. Thermophys. 29, 468 (2008)

    Article  ADS  Google Scholar 

  35. Kadjo A., Garnier J.P., Maye J.P., Martemianov S.: Int. J. Thermophys. 29, 1267 (2008)

    Article  ADS  Google Scholar 

  36. Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford University Press, London (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martemianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamour, M., Garnier, J.P., Grandidier, J.C. et al. Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading. Int J Thermophys 32, 1025–1037 (2011). https://doi.org/10.1007/s10765-011-0964-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-0964-4

Keywords

Navigation