Skip to main content
Log in

Modeling Thermal Conductivity of Electrolyte Mixtures in Wide Temperature and Pressure Ranges: Seawater and Its Main Components

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A model has been established for calculating the thermal conductivity of aqueous electrolyte solutions containing the Na+, K+, Mg2+, Ca2+, Cl, SO 2−4 , CO 2−3 , HCO 3 , and Br ions. The model is based on a previously developed computational framework for the thermal conductivity of mixed-solvent electrolyte systems, which has been expanded by explicitly accounting for pressure effects in addition to temperature and electrolyte composition effects. The model consists of a contribution of the solvent, a contribution of individual species expressed using modified Riedel coefficients, and an ionic strength-dependent term that is due to interactions between species. The model accurately represents the thermal conductivity of solutions containing single and multiple salts at temperatures ranging from 273 K to 573 K, pressures up to at least 1400 bar, and concentrations up to the limit of solid saturation. Further, the model has been applied to seawater and used to elucidate the discrepancies between the experimental data for seawater and those for Na–K–Mg–Ca–Cl–SO4 salt solutions. With parameters evaluated on the basis of data for binary and multicomponent salt solutions, the model provides reliable predictions of the thermal conductivity of seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magomedov U.B.: High Temp. 31, 458 (1993)

    Google Scholar 

  2. Abdulagatov I.M., Magomedov U.B.: Int. J. Thermophys. 15, 401 (1994)

    Article  ADS  Google Scholar 

  3. Magomedov U.B.: High Temp. 36, 44 (1998)

    Google Scholar 

  4. Abdulagatov I.M., Azizov N.D.: Int. J. Thermophys. 26, 593 (2005)

    Article  ADS  Google Scholar 

  5. Assael M.J., Charitidou E., Stassis J.Ch., Wakeham W.A.: Ber. Bunsenges. Phys. Chem. 93, 887 (1989)

    Google Scholar 

  6. El’darov V.S.: Zhur. Fiz. Khim. 60, 603 (1986)

    Google Scholar 

  7. Abdullayev K.M., Eldarov V.S., Mustafaev A.M.: High Temp. 36, 375 (1998)

    Google Scholar 

  8. El’darov V.S.: High Temp. 41(3), 327 (2003)

    Article  Google Scholar 

  9. El’darov V.S.: Energetika 1, 57 (2004)

    Google Scholar 

  10. Nagasaka Y., Okada H., Suzuki J., Nagashima A.: Ber. Bunsenges. Phys. Chem. 87, 859 (1983)

    Google Scholar 

  11. Ramires M.L.V., Nietode de Castro C.A., Fareleira J.M.N.A.: J. Chem. Eng. Data 39, 186 (1994)

    Article  Google Scholar 

  12. Ramires M.L.V., Nietode de Castro C.A.: Int. J. Thermophys. 21, 671 (2000)

    Article  Google Scholar 

  13. Wang P., Anderko A.: Ind. Eng. Chem. Res. 47, 5698 (2008)

    Article  Google Scholar 

  14. Riedel L.: Chem. Ing. Tech. 23, 59 (1951)

    Article  Google Scholar 

  15. Feistel R.: Prog. Oceanogr. 58, 43 (2003)

    Article  ADS  Google Scholar 

  16. Feistel R., Marion G.: Prog. Oceanogr. 74, 515 (2007)

    Article  ADS  Google Scholar 

  17. Feistel R.: Deep Sea Res. 55, 1639 (2008)

    Article  Google Scholar 

  18. International Association for the Properties of Water and Steam, Release of the IAPWS Formulation for the Thermodynamic Properties of Seawater, IAPWS, Berlin, www.iapws.org

  19. International Association for the Properties of Water and Steam, Release of the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance, IAPWS, www.iapws.org

  20. Kapustinskii A.F., Ruzavin I.I.: Zhur. Fiz. Khim. 29, 2222 (1955)

    Google Scholar 

  21. Vargaftik N.B., Osminin Yu.P.: Teploenergetika 7, 11 (1956)

    Google Scholar 

  22. Davis P.S., Theeuwes F., Bearman R.J., Gordon R.F.: J. Chem. Phys. 55, 4776 (1971)

    Article  ADS  Google Scholar 

  23. Yusufova V.D., Pepinov R.I., Nikolaev V.A., Guseinov G.M.: Inzh. Fiz. Zhur. 29, 600 (1975)

    Google Scholar 

  24. Chernen’kaya E.I., Vernigora G.A.: Zh. Prikl. Khim. 45, 1704 (1972)

    Google Scholar 

  25. Rau W.: Z. Angew. Phys. 1, 211 (1948)

    Google Scholar 

  26. Aseyev G.G.: Electrolytes, Properties of Solutions, Methods for Calculation of Multicomponent Systems and Experimental Data on Thermal Conductivity and Surface Tension. Begell House Inc., New York (1999)

    Google Scholar 

  27. Meyer E.: Z. Ges. Kälte-Industrie 47, 129 (1940)

    Google Scholar 

  28. Wang P., Anderko A., Young R.D.: Fluid Phase Equilib. 203, 141 (2002)

    Article  Google Scholar 

  29. Wang P., Springer R.D., Anderko A., Young R.D.: Fluid Phase Equilib. 222–223, 11 (2004)

    Article  Google Scholar 

  30. Wang P., Anderko A., Springer R.D., Young R.D.: J. Mol. Liq. 125, 37 (2006)

    Article  Google Scholar 

  31. Sharqawy M.H., Lienhard J.H., Zubair S.M.: Desalin. Water Treat. 16, 354 (2010)

    Article  Google Scholar 

  32. M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Thermophysical Properties of Seawater, http://web.mit.edu/seawater

  33. Caldwell D.: Deep Sea Res. 21, 131 (1974)

    Google Scholar 

  34. Castelli V., Stanley E., Fischer E.: Deep Sea Res. 21, 311 (1974)

    Google Scholar 

  35. Jamieson D.T., Tudhope J.S.: Desalination 8, 393 (1970)

    Article  Google Scholar 

  36. Tufeu R., Le Neindre B., Johannin P.: Compt. Rend. 262, 229 (1966)

    Google Scholar 

  37. Nukiyama S., Yoshizawa Y.: J. Soc. Mech. Eng. Jpn. 37, 347 (1934)

    Google Scholar 

  38. B.M. Fabuss, A. Korosi, Properties of seawater and solutions containing sodium chloride, potassium chloride, sodium sulphate and magnesium sulphate, Office of Saline Water Research Development Progress Report No. 384, 1968

  39. Millero F.J., Feistel R., Wright D.G., McDougall T.J.: Deep Sea Res. I 55, 50 (2008)

    Article  Google Scholar 

  40. Pitzer K.S.: J. Am. Chem. Soc. 102, 2902 (1980)

    Article  Google Scholar 

  41. Abrams D.S., Prausnitz J.M.: AIChE J. 21, 116 (1975)

    Article  Google Scholar 

  42. Helgeson H.C., Kirkham D.H., Flowers G.C.: Am. J. Sci. 274, 1089 (1974a)

    Article  Google Scholar 

  43. Helgeson H.C., Kirkham D.H., Flowers G.C.: Am. J. Sci. 274, 1199 (1974b)

    Article  Google Scholar 

  44. Helgeson H.C., Kirkham D.H., Flowers G.C.: Am. J. Sci. 276, 97 (1976)

    Article  Google Scholar 

  45. Helgeson H.C., Kirkham D.H., Flowers G.C.: Am. J. Sci. 281, 1241 (1981)

    Article  Google Scholar 

  46. Tanger J.C., Helgeson H.C.: Am. J. Sci. 288, 19 (1988)

    Article  Google Scholar 

  47. Shock E.L., Helgeson H.C., Sverjensky D.A.: Geochim. Cosmochim. Acta 53, 2157 (1989)

    Article  ADS  Google Scholar 

  48. Shock E.L., Helgeson H.C.: Geochim. Cosmochim. Acta 52, 2009 (1988)

    Article  ADS  Google Scholar 

  49. Shock E.L., Helgeson H.C.: Geochim. Cosmochim. Acta 54, 915 (1990)

    Article  ADS  Google Scholar 

  50. Shock E.L., Sassani D.C., Willis M., Sverjensky D.A.: Geochim. Cosmochim. Acta 61, 907 (1997)

    Article  ADS  Google Scholar 

  51. Sverjensky D.A., Shock E.L., Helgeson H.C.: Geochim. Cosmochim. Acta 61, 1359 (1997)

    Article  ADS  Google Scholar 

  52. Gruszkiewicz M.S., Palmer D.A., Springer R.D., Wang P., Anderko A.: J. Solut. Chem. 36, 723 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Anderko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Anderko, A. Modeling Thermal Conductivity of Electrolyte Mixtures in Wide Temperature and Pressure Ranges: Seawater and Its Main Components. Int J Thermophys 33, 235–258 (2012). https://doi.org/10.1007/s10765-012-1154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1154-8

Keywords

Navigation