Skip to main content
Log in

Generalized Wien’s Displacement Law in Determining the True Temperature of \(\text{ ZrB }_{2}\)–SiC-Based Ultrahigh-Temperature Ceramic: Thermodynamics of Thermal Radiation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The temperature dependence of the generalized Wien displacement law is investigated. For determining the true temperature of a \(\text{ ZrB }_{2}\)–SiC-based ultrahigh-temperature ceramic, the experimental values of the position of the maximum of the spectral density power are needed. Thermodynamics of the thermal radiation of \(\text{ ZrB }_{2}\)–SiC is constructed by using the temperature dependence of the generalized Stefan–Boltzmann law. The calculated values of the normal total emissivity for \(\text{ ZrB }_{2}\)–SiC at different temperatures are in good agreement with experimental data. The total radiation power emitted from a surface of \(\text{ ZrB }_{2}\)–SiC specimens at different temperatures is calculated. The temperature dependences of the Helmholtz free energy, entropy, heat capacity at constant volume, pressure, enthalpy, and internal energy of the thermal radiation of \(\text{ ZrB }_{2}\)–SiC are obtained. For determining the true temperature, experimental values of either the normal total emissivity or the normal total energy density are needed. The uncertainty in the determination of the true temperature is no greater than 1 %. A new universality class of bodies with a new relationship between the temperature \(T\) and the position of the spectral energy density maximum is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, J. Eur. Ceram. Soc. 22, 2757 (2002)

    Google Scholar 

  2. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, I. Talmy, UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. Interface 16, 30 (2007)

    Google Scholar 

  3. P.T.B. Shaffer, in Engineered Materials Handbook, vol. 4, Ceramics and Glass (ASM International, Metals Park, OH, 1991), pp. 804–811

  4. F.Y. Yang, X.H. Zhang, J.C. Han, S.Y. Du, Mater. Des. 29, 1817 (2008)

    Article  Google Scholar 

  5. S.H. Meng, G.Q. Liu, Y. Guo, X.H. Xu, F. Song, Mater. Des. 30, 2108 (2009)

    Article  Google Scholar 

  6. L. Kaufman, E.V. Clougherty, in Proceedings of the 5th Plansee Seminar (Reuter, Australia, 1963), pp. 722–738

  7. S.H. Meng, G.Q. Liu, S.L. Sun, Mater. Des. 31, 556 (2010)

    Article  Google Scholar 

  8. J.L. Cao, Q. Xu, S.Z. Zhu, J.F. Zhao, F.C. Wang, Key Eng. Mater. 368–372, 1743 (2008)

    Article  Google Scholar 

  9. J.C. Han, P. Hu, X.H. Zhang, S.H. Meng, Key Eng. Mater. 368–372, 1722 (2008)

    Article  Google Scholar 

  10. S.Z. Zhu, Q. Xu, C. Feng, J.F. Zhao, J.L. Cao, F.C. Wang, Key Eng. Mater. 368–372, 1727 (2008)

    Article  Google Scholar 

  11. F.Y. Yang, X.H. Zhang, S.Y. Du, Key Eng. Mater. 368–372, 1753 (2008)

    Article  Google Scholar 

  12. W.W. Wu, G.J. Zhang, Y.M. Kan, P.L. Wang, Key Eng. Mater. 368–372, 1758 (2008)

    Article  Google Scholar 

  13. S. Meng, H. Chen, J. Hu, Z. Wang, Mater. Des. 32, 377 (2011)

    Article  Google Scholar 

  14. L. Scatteia, R. Borrelli, G. Cosentino, E. Beche, J.L. Sans, M. Balat-Pichelin, J. Spacecraft Rockets 43, 1004 (2006)

    Article  ADS  Google Scholar 

  15. J.F. Justin, A. Jankowiak, Onera J. Aerospace Lab. 3, 1 (2011) http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL3-08.pdf

  16. A.I. Fisenko, S.N. Ivashov, Int. J. Thermophys. 30, 1524 (2009)

    Article  ADS  Google Scholar 

  17. A.I. Fisenko, V. Lemberg, Int. J. Thermophys. 33, 513 (2012)

    Article  ADS  Google Scholar 

  18. A.I. Fisenko, S.N. Ivashov, J. Phys. D: Appl. Phys. 32, 2882 (1999)

    Article  ADS  Google Scholar 

  19. L.D. Landau, E.M. Lifshitz, Statistical Physics, Course of Theoretical Physics, vol. 5 (Pergamon Press, Oxford, New York, 1980), p. 484

    Google Scholar 

  20. A. Kaw, E. Kalu, Numerical Methods with Applications, 1st edn. (http://www.autarkaw.com, 2008), p. 728

  21. A.D. Aleksandrov, A.N. Kolmogorov, M.A. Lavrent’ev, Mathematics: Its Content, Methods and Meaning (Dover Publications, Mineola, NY, 1999), p. 1120

Download references

Acknowledgments

The authors cordially thank Professor L.A. Bulavin, Professor N. P. Malomuzh, and Professor V.A. Masur for fruitful discussion. Special thanks to Professor S. Meng for providing us with experimental data on the normal spectral emissivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy I. Fisenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisenko, A.I., Lemberg, V. Generalized Wien’s Displacement Law in Determining the True Temperature of \(\text{ ZrB }_{2}\)–SiC-Based Ultrahigh-Temperature Ceramic: Thermodynamics of Thermal Radiation. Int J Thermophys 34, 486–495 (2013). https://doi.org/10.1007/s10765-013-1429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1429-8

Keywords

Navigation