Skip to main content
Log in

Correlation on the Electrical and Thermal Conductivity for Binary Mg–Al and Mg–Zn Alloys

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, the electrical resistivity and thermal conductivity of both as-solution binary Mg–Al and Mg–Zn alloys were investigated from 298 K to 448 K, and the correlation between the corresponding electrical conductivity and thermal conductivity of the alloys was analyzed. The electrical resistivity of the Mg–Al and Mg–Zn alloys increased linearly with composition at 298 K, 348 K, 398 K, and 448 K, while the thermal conductivity of the alloys exponentially decreased with composition. Moreover, the electrical resistivity and thermal conductivity for both Mg–Al and Mg–Zn alloys varied linearly with temperature. On the basis of the Smith–Palmer equation, the thermal conductivity of both binary Mg alloys was found to be correlated quite well with the electrical conductivity in the temperature range from 298 K to 448 K. The corresponding Lorenz number is equal to \(2.162\times 10^{-8} \,\hbox {V}^{2}\cdot \hbox {K}^{-2}\), and the lattice thermal conductivity is equal to \(5.111 \,\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\). The possible mechanisms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Yang, F. Pan, L. Cheng, J. Shen, Mater. Sci. Eng., A 512, 132 (2009)

    Article  Google Scholar 

  2. B. Lv, J. Peng, Y. Peng, A. Tang, J. Magn. Alloys (2013) (in press)

  3. M. Ping-li, Y. Jin-cheng, L. Zheng, D. Yang, J. Magn. Alloys (2013) (in press)

  4. J. Zhang, W. Li, Z. Guo, J. Magn. Alloys (2013) (in press)

  5. R. Li, F. Pan, B. Jiang, H. Dong, Q. Yang, Mater. Sci. Eng., A 562, 33 (2012)

    Google Scholar 

  6. M. Yamasaki, Y. Kawamura, Scripta Mater. 60, 264 (2009)

    Article  Google Scholar 

  7. C.J. Chen, Q.D. Wang, D.D. Yin, J. Alloys Compd. 487, 560 (2009)

    Article  Google Scholar 

  8. A. Rudajevova, M. Staněk, P. Lukáč, Mater. Sci. Eng., A 341, 152 (2003)

    Article  Google Scholar 

  9. A. Rudajevova, P. Lukac, Mater. Sci. Eng., A 397, 16 (2005)

    Article  Google Scholar 

  10. A. Rudajevová, P. Lukac, J. Kiehn, K. Kainer, B. Mordike, Scripta Mater. 40, 57 (1998)

    Article  Google Scholar 

  11. X. Chen, J. Liu, Z. Zhang, F. Pan, Mater. Des. 42, 327 (2012)

    Article  ADS  Google Scholar 

  12. S. Lee, H.J. Ham, S.Y. Kwon, S.W. Kim, C.M. Suh, Int. J. Thermophys. doi:1007/s10765-011-1145-1

  13. B. Noble, T. Pike, J. Phys. F: Met. Phys. 11, 587 (1981)

    Article  ADS  Google Scholar 

  14. P. Klemens, R. Williams, Int. Met. Rev. 31, 197 (1986)

    Article  Google Scholar 

  15. C. Smith, E. Palmer, Trans. Am. Inst. Min. 117, 225 (1935)

    Google Scholar 

  16. R. Powell, R. Tye, J. Less-Common Met. 3, 226 (1961)

    Article  Google Scholar 

  17. R. Powell, R. Tye, M. Woodman, Advances in Thermophysical Properties at Extreme Temperatures and Pressures (ASME, New York, 1965)

    Google Scholar 

  18. R. Endo, M. Shima, M. Susa, Int. J. Thermophys. 31, 1991 (2010)

    Article  ADS  Google Scholar 

  19. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1976)

    Google Scholar 

  20. Y. Hanaoka, K. Hinode, K. Takeda, D. Kodama, Mater. Trans. 43, 1621 (2002)

    Article  Google Scholar 

  21. N. Stojanovic, D. Maithripala, J. Berg, M. Holtz, Phys. Rev. B: Condens. Matter 82, 075418 (2010)

    Article  ADS  Google Scholar 

  22. W. Zhang, S. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, Microelectron. Eng. 76, 146 (2004)

    Article  Google Scholar 

  23. J. Leitner, P. Voňka, D. Sedmidubský, P. Svoboda, Thermochim. Acta 497, 7 (2010)

    Article  Google Scholar 

  24. E.I. Salkovitz, A. Schindler, Phys. Rev. 98, 543 (1955)

    Article  ADS  Google Scholar 

  25. A. Rudajevová, F. Von Buch, B. Mordike, J. Alloys Compd. 292, 27 (1999)

    Article  Google Scholar 

  26. A. Gaganov, J. Freudenberger, E. Botcharova, L. Schultz, Mater. Sci. Eng., A 437, 313 (2006)

    Article  Google Scholar 

  27. P. Nath, K. Chopra, Thin Solid Films 20, 53 (1974)

    Article  ADS  Google Scholar 

  28. G. White, R. Tainsh, Phys. Rev. 119, 1869 (1960)

    Article  ADS  Google Scholar 

  29. A.H. Wilson, Proc. Camb. Philos. Soc. 33, 371 (1937)

    Article  ADS  MATH  Google Scholar 

  30. A. Goonewardene, J. Karunamuni, R. Kurtz, R. Stockbauer, Surf. Sci. 501, 102 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NFSC) (Project 50725413), the Ministry of Science & Technology of China (Project 2011BAE22B04), and Chongqing Science and Technology Commission (Project CSTC2013JCYJC60001). The authors thank Dr. B. Song and Dr. Y.X. Zhang from Chongqing University for giving valuable advice and kind discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, H., Pan, F., Wang, X. et al. Correlation on the Electrical and Thermal Conductivity for Binary Mg–Al and Mg–Zn Alloys. Int J Thermophys 34, 1336–1346 (2013). https://doi.org/10.1007/s10765-013-1490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1490-3

Keywords

Navigation