Skip to main content
Log in

A Model of Wavefunction Collapse in Discrete Space-Time

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We give a new argument supporting a gravitational role in quantum collapse. It is demonstrated that the discreteness of space-time, which results from the proper combination of quantum theory and general relativity, may inevitably result in the dynamical collapse of the wave function. Moreover, the minimum size of discrete space-time yields a plausible collapse criterion consistent with experiments. By assuming that the source to collapse the wave function is the inherent random motion of particles described by the wave function, we further propose a concrete model of wavefunction collapse in the discrete space-time. It is shown that the model is consistent with the existing experiments and macroscopic experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, S. L. (2001). preprint quant-ph/0109029.

  • Adler, S. L., Brody, D. C., Brun, T. A., and Hughston, L. P. (2001). Journal of Physics A: Mathematical and General 34, 8795.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Adler, R. J. and Santiago, D. I. (1999). Modern Physics Letters A 14, 1371

    Article  ADS  Google Scholar 

  • Amelino-Camelia, G. (2000). Nature 408, 661

    Article  ADS  Google Scholar 

  • Bell, J. S. (1993). In Davis, P. and Brown, J. (eds.), The Ghost in the Atom. Cambridge University Press, Cambridge.

  • Berg, B. A. (1996). preprint hep-ph/9609232.

  • Bunge, M. (1973). Philosophy of Physics. Reidel, Dordrecht.

    Google Scholar 

  • Christian, J. (2001). In Callender, C. and Huggett, N. (eds.), Physics Meets Philosophy at the Planck scale. Cambridge University Press, Cambridge.

  • Cova, S., Ghioni, M., Lacaita, A., Samori, C., and Zappa, F. (1996). Applied Optics 35, 1956.

    Article  ADS  Google Scholar 

  • Diosi, L. (1989). Physical Review A 404, 1165.

    Article  ADS  Google Scholar 

  • Eidelman, S., et al. (2004). (Particle Data Group). Physics Letters B 592, 1.

    Article  ADS  Google Scholar 

  • Einstein, A. (1936). Journal of the Franklin Institute 221, 378.

    Google Scholar 

  • Feynman, R. (1995). In Hatfield, B. (ed.), Feynman Lectures on Gravitation, Reading, Massachusetts, Addison-Wesley.

  • Fivel, D. I. (1997a). Physical Review A 56, 146.

    Article  MathSciNet  ADS  Google Scholar 

  • Fivel, D. I. (1997b). preprint quant-ph/9710042.

  • Garay, L. J. (1995). International Journal of Modern Physics A 10, 145.

    Article  ADS  Google Scholar 

  • Ghirardi, G. C., Pearle, P., and Rimini, A. (1990). Physical Review A 42, 78.

    Article  PubMed  MathSciNet  ADS  Google Scholar 

  • Ghirardi, G. C., Rimini, A., and Weber, T. (1986). Physical Review D 34, 470.

    Article  MathSciNet  ADS  Google Scholar 

  • Heisenberg, W. (1957). Reviews of Modern Physics 29, 269.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hughston, L. P. (1996). Proceedings of the Royal Soceity, London A 452, 953.

    MATH  MathSciNet  ADS  Google Scholar 

  • Pearle, P. (1989). Physical Review A 39, 2277.

    Article  PubMed  ADS  Google Scholar 

  • Pearle, P. (1999). In Petruccione, F. and Breuer, H. P. (eds.), Open Systems and Measurement in Relativistic Quantum Theory. Springer Verlag, New York.

  • Pearle, P. (2004). Physical Review A 69, 42106.

    Article  ADS  Google Scholar 

  • Percival, I. C. (1994). Proceedings of the Royal Soceity, London A 447, 189.

    Article  MATH  ADS  Google Scholar 

  • Penrose, R. (1996). General Relativity and Gravitation 28, 581.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Polchinski, J. (1998). String Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  • Redhead, P. A. (1996). In Rigden, J. S. (ed.), Macmillan Encyclopedia of Physics, vol. IV, p.1657. Simon & Schuster Macmillan, New York.

  • Rovelli, C. and Smolin, L. (1995). Nuclear Physics B 442, 593.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Salecker, H. and Wigner, E. P. (1958). Physical Review 109, 571.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Shan, G. (2000). Quantum Motion and Superluminal Communication, Chinese BT Publishing House, Beijing.

    Google Scholar 

  • Shan, G. (2003). Quantum, Tsinghua University Press, Beijing.

    Google Scholar 

  • Shimony, A. (1993). Search for a Naturalistic World View, vol. II. Cambridge University Press, Cambridge.

  • Smolin, L. (2001). Three Roads to Quantum Gravity, Weidenfeld and Nicolson and Basic Books, London and New York.

    MATH  Google Scholar 

  • Snyder, H. S. (1947). Physical Review 71, 38.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Shan.

Additional information

PACS numbers: 0365B 0460

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, G. A Model of Wavefunction Collapse in Discrete Space-Time. Int J Theor Phys 45, 1943–1957 (2006). https://doi.org/10.1007/s10773-006-9163-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9163-7

Keywords

Navigation