Skip to main content
Log in

A Protocol for the Quantum Private Comparison of Equality with χ-Type State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a new quantum protocol for comparing the equal information with the help of a semi-honest third party (TP). Different from previous protocols, we utilize the four-particle χ-type states as the information carriers. Various kinds of outside attacks and participant attacks are discussed in detail. One party cannot learn the other’s private information. The TP cannot learn any information about the private information, even about the comparison result or the length of secret inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 67, 557–559 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  5. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  MATH  ADS  Google Scholar 

  6. Guo, F.Z., Gao, F., Wen, Q.Y., Zhu, F.C.: A two-step channel-encrypting quantum key distribution protocol. Int. J. Quantum Inf. 8, 1013–1022 (2010)

    Article  MATH  Google Scholar 

  7. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Quantum key distribution by construction nonorthogonal states with Bell states. Int. J. Mod. Phys. B 24, 4611–4618 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 052307 (1999)

    Article  Google Scholar 

  9. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 162–168 (2004)

    Article  Google Scholar 

  10. Deng, F.G., Zhou, H.Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329–334 (2005)

    Article  MATH  ADS  Google Scholar 

  11. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  14. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  15. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure communication scheme with w state. Commun. Theor. Phys. 48, 637–640 (2007)

    Article  MathSciNet  Google Scholar 

  16. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  17. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Robust quantum secure direct communication over collective rotating channel. Commun. Theor. Phys. 53, 645–647 (2010)

    Article  MATH  ADS  Google Scholar 

  18. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Bouwmeester, D., Pan, J.W., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  20. Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multi-party quantum summation. Acta Phys. Sin. 56, 6214 (2007)

    MathSciNet  Google Scholar 

  21. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793–2804 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 012333 (2007)

    Article  ADS  Google Scholar 

  23. Li, Y., Zeng, G.H.: Opt. Rev. 15, 219 (2008)

    Article  Google Scholar 

  24. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  25. Markus, J., Moti, Y.: Proving without knowing: on oblivious, agnostic and blindfolded provers. In: Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology, pp. 186–200 (1996)

    Google Scholar 

  26. Yao, A.: Protocols for secure computations. In: Proc. 23rd IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)

    Google Scholar 

  27. Yao, A.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pp. 162–167 (1986)

    Google Scholar 

  28. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Commun. ACM 39, 77–85 (1996)

    Article  Google Scholar 

  29. Cachin, C.: Efficient private bidding and auctions with an oblivious third party. In: Proceedings of the 6th ACM Conference on Computer and Communications Security, pp. 120–127 (1999)

    Chapter  Google Scholar 

  30. Fabrice, B., Berry, S., et al.: A fair and efficient solution to the socialist millionaires’ problem. Discrete Appl. Math. 111, 23–36 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Qin, J., Zhang, Z.F., Feng, D.G., Li, B.: A protocol of comparing information without leaking. J. Softw. 15, 421–427 (2004)

    MATH  Google Scholar 

  32. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Chen, X.B., Xu, G., Niu, X.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  34. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. (2011). doi:10.1016/j.optcom.2011.02.017

    Google Scholar 

  35. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  36. Wu, C., Yeo, Y., Kwek, L., Oh, C.: Phys. Rev. A 75, 032332 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  37. Gao, G., Wang, L.P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states. Commun. Theor. Phys. 75, 447–451 (2010)

    ADS  Google Scholar 

  38. Xiu, X.M., Dong, H.K., Dong, L., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282, 2457–2459 (2009)

    Article  ADS  Google Scholar 

  39. Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MATH  MathSciNet  Google Scholar 

  40. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  41. Lin, S., Gao, F., Guo, F.Z., et al.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom–Felbinger protocol. Opt. Commun. 281, 4553 (2008)

    Article  ADS  Google Scholar 

  43. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  44. Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chinese. Physics B 18, 1333 (2009)

    ADS  Google Scholar 

  45. Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. A 56, 445 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Wang, YB., Jiang, ZT. et al. A Protocol for the Quantum Private Comparison of Equality with χ-Type State. Int J Theor Phys 51, 69–77 (2012). https://doi.org/10.1007/s10773-011-0878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0878-8

Keywords

Navigation