Skip to main content
Log in

Quantum Dialogue with Authentication Based on Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose an authenticated quantum dialogue protocol, which is based on a shared private quantum entangled channel. In this protocol, the EPR pairs are randomly prepared in one of the four Bell states for communication. By performing four Pauli operations on the shared EPR pairs to encode their shared authentication key and secret message, two legitimate users can implement mutual identity authentication and quantum dialogue without the help from the third party authenticator. Furthermore, due to the EPR pairs which are used for secure communication are utilized to implement authentication and the whole authentication process is included in the direct secure communication process, it does not require additional particles to realize authentication in this protocol. The updated authentication key provides the counterparts with a new authentication key for the next authentication and direct communication. Compared with other secure communication with authentication protocols, this one is more secure and efficient owing to the combination of authentication and direct communication. Security analysis shows that it is secure against the eavesdropping attack, the impersonation attack and the man-in-the-middle (MITM) attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  2. Ekert, A.E.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  7. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  8. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  9. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  10. Cai, Q.Y.: The “Ping-Pong” Protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Cai, Q.Y., Li, B.W.: Improving the capacity of the Bostroem-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  13. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  15. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18 (2005)

    Article  ADS  Google Scholar 

  16. Shapiro, J.H.: Defeating passive eavesdropping with quantum illumination. Phys. Rev. A 80, 022320 (2009)

    Article  ADS  Google Scholar 

  17. Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf Process 10, 317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, Y.H., Zhai, W.D., Cao, W.Z., Li, C.: Quantum secure direct communication by using general entangled states. Int. J. Theor. Phys. 50, 325 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, Y.G., Chai, H.P., Teng, Y.W., Wen, Q.Y.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50, 395 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357 (2002)

    ADS  Google Scholar 

  21. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. G 50(5), 558–562 (2007)

    Article  Google Scholar 

  23. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comparing the efficiencies of different detect strategies in the ping-pong protocol. Sci. China Ser. G 51, 559 (2008)

    Article  Google Scholar 

  24. Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282, 2460 (2009)

    Article  ADS  Google Scholar 

  25. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283, 1984 (2010)

    Article  ADS  Google Scholar 

  26. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  27. Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on Quantum direct communication with authentication. Phys. Rev. A 75, 026301 (2007)

    Article  ADS  Google Scholar 

  28. Yen, C.A., Horng, S.J., Goan, H.S., Kao, T.W., Chou, Y.H.: Quantum direct communication with mutual authentication. Quantum. Inf. Comput. 9, 0376 (2009)

    MathSciNet  Google Scholar 

  29. Liu, D., Pei, C., Quan, D., Zhao, N.: A new quantum secure direct communication scheme with authentication. Chin. Phys. Lett. 27, 050306 (2010)

    Article  ADS  Google Scholar 

  30. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of quantum secure direct communication and authentication scheme via Bell states. Chin. Phys. Lett. 28, 020303 (2011)

    Article  ADS  Google Scholar 

  31. Naseri, M.: An efficient protocol for quantum secure dialogue with authentication by using single photons. Int. J. Quantum. Inf. 9, 1677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bennett, C.H., Brasaard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewer for helpful comments. This work was supported by National Science Foundation of China under grant No. 61072140, the 111 Project under grant No. B08038, and the Specialized Research Fund for the Doctoral Program of Higher Education under grant No. 20100203110003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsu Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, D., Ma, W., Yin, X. et al. Quantum Dialogue with Authentication Based on Bell States. Int J Theor Phys 52, 1825–1835 (2013). https://doi.org/10.1007/s10773-012-1276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1276-6

Keywords

Navigation