Skip to main content
Log in

Bound on Noise of Coherent Source for Secure Continuous-Variable Quantum Key Distribution

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Coherent source of continuous-variable quantum key distribution (CV QKD) system may become noisy in practical applications. The security of CV-QKD scheme with the noisy coherent source is investigated under realistic conditions of quantum channel and detector. In particular, two models are proposed to characterize the noisy coherent source through introducing a party (Fred) who induces the noise with an optical amplifier. When supposing the party Fred is untrusted, two lower security bounds to the noise of the coherent source are derived for reverse reconciliation and realistic homodyne and heterodyne detections. While supposing Fred is a neutral party, we derive two tight security bounds without knowing Fred’s exact state for ideal detections. Moreover, the simulation results show that the security of the reverse reconciliation CV-QKD protocols is very sensitive to the noise of coherent source for both the homodyne and heterodyne detections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference Computers, System and Signal Processing, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  4. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: arXiv:1110.3234 (2011)

  5. Grosshans, F., Grangier, P.: Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  6. Grosshan, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  7. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Phys. Rev. Lett. 93, 170504 (2004)

    Article  ADS  Google Scholar 

  8. Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: Phys. Rev. Lett. 95, 180503 (2005)

    Article  ADS  Google Scholar 

  9. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tuallebrouri, R., McLaughlin, S.W., Grangier, P.: Phys. Rev. A 76, 042305 (2007)

    Article  ADS  Google Scholar 

  10. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Phys. Rev. A 76, 052323 (2007)

    Article  ADS  Google Scholar 

  11. Grosshans, F.: Phys. Rev. Lett. 94, 020504 (2005)

    Article  ADS  Google Scholar 

  12. Navascués, M., Acín, A.: Phys. Rev. Lett. 94, 020505 (2005)

    Article  ADS  Google Scholar 

  13. Lodewyck, J., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Phys. Rev. A 72, 050303(R) (2005)

    Article  ADS  Google Scholar 

  14. García-Patrón, R., Cerf, N.J.: Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  15. Navascués, M., Grosshans, F., Acín, A.: Phys. Rev. Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  16. Pirandola, S., Braunstein, S.L., Lloyd, S.: Phys. Rev. Lett. 101, 200504 (2008)

    Article  ADS  Google Scholar 

  17. Leverrier, A., Grangier, P.: Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  18. Leverrier, A., Grangier, P.: Phys. Rev. Lett. 106, 259902(E) (2011)

    Article  ADS  Google Scholar 

  19. Renner, R., Cirac, J.I.: Phys. Rev. Lett. 102, 110504 (2009)

    Article  ADS  Google Scholar 

  20. Leverrier, A., Grosshans, F., Grangier, P.: Phys. Rev. A 81, 062343 (2010)

    Article  ADS  Google Scholar 

  21. García-Patrón, R., Cerf, N.J.: Phys. Rev. Lett. 102, 130501 (2009)

    Article  ADS  Google Scholar 

  22. Filip, R.: Phys. Rev. A 77, 022310 (2008)

    Article  ADS  Google Scholar 

  23. Shen, Y., Yang, J., Guo, H.: J. Phys. B 42, 235506 (2009)

    Article  ADS  Google Scholar 

  24. Usenko, V.C., Filip, R.: Phys. Rev. A 81, 022318 (2010)

    Article  ADS  Google Scholar 

  25. Shen, Y., Peng, X., Yang, J., Guo, H.: Phys. Rev. A 83, 052304 (2011)

    Article  ADS  Google Scholar 

  26. Weedbrook, C., Pirandola, S., Lloyd, S., Ralph, T.C.: Phys. Rev. Lett. 105, 110501 (2010)

    Article  ADS  Google Scholar 

  27. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: J. Phys. B 42, 114014 (2009)

    Article  ADS  Google Scholar 

  28. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Quantum Inf. Comput. 3, 535 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Holevo, A.S.: Probl. Inf. Transm. 9, 177 (1973)

    MathSciNet  Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61170228, 60970109, and 61102053).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., He, GQ. & Zeng, GH. Bound on Noise of Coherent Source for Secure Continuous-Variable Quantum Key Distribution. Int J Theor Phys 52, 1572–1582 (2013). https://doi.org/10.1007/s10773-012-1475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1475-1

Keywords

Navigation