Skip to main content
Log in

Fault-Tolerate Quantum Private Comparison Based on GHZ States and ECC

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

There are some quantum private comparison (QPC) schemes proposed previously. In this paper we study these QPC protocols in non-ideal scenario and find that they are not secure there. For resolving the problem, we propose a QPC scheme which could be performed in practical scenario. By the use of Greenberger-Horne-Zeilinger (GHZ) states and error-correcting code (ECC), the scheme has the capability of fault-tolerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India, p. 175. IEEE Press, New York (1984)

    Google Scholar 

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Wang, X.B.: Quantum key distribution with two-qubit quantum codes. Phys. Rev. Lett. 92, 077902 (2004)

    Article  ADS  Google Scholar 

  4. Zhang, Q., Yin, J., Chen, T.Y., Lu, S., Zhang, J., Li, X.Q., Yang, T., Wang, X.B., Pan, J.W.: Experimental fault-tolerant quantum cryptography in a decoherence-free subspace. Phys. Rev. A 73, 020301 (2006)

    Article  ADS  Google Scholar 

  5. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  6. Tan, Y.G., Cai, Q.Y.: Practical decoy state quantum key distribution with finite resource. Eur. Phys. J. D 56, 449 (2010)

    Article  ADS  Google Scholar 

  7. Wei, T., Tsai, C.W., Hwang, T.: Comment on quantum key distribution and quantum authentication based on entangled state. Int. J. Theor. Phys. 50, 2703–2707 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  11. Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 65, 373 (2008)

    Google Scholar 

  12. Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

  13. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5–6), 0434 (2011)

    MathSciNet  Google Scholar 

  14. Hwang, T., Hwang, C.C., Yang, C.W., Li, C.M.: Revisiting Deng et al.’s multiparty quantum secret sharing protocol. Int. J. Theor. Phys. 50, 2790–2798 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shi, R., Huang, L.S., Yang, W., Zhong, H.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50, 3329–3336 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  18. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  19. Tsai, C.W., Hsieh, C.R., Hwanga, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779 (2011)

    Article  ADS  Google Scholar 

  20. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  22. Zhang, Z.J., Liu, Y.M., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Commun. Theor. Phys. 44, 847 (2005)

    Article  ADS  Google Scholar 

  23. Chen, X.B., Wen, Q.Y., Zhu, F.C.: Quantum circuits for probabilistic entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717 (2007)

    Article  MATH  Google Scholar 

  24. Cao, H.J., Wang, H.S., Li, P.F., Song, H.S.: Teleportation of a 3-dimensional GHZ state. Int. J. Theor. Phys. 51, 1448–1452 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yao, A.C.: Protocols for secure computation. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, p. 160. IEEE Comput. Soc., Washington (1982)

    Google Scholar 

  26. Goldreich, O., Micali, S., Wigderson, A.: How to play a mental game. In: Annual ACM Symposium on Theory of Computing, p. 218. ACM, New York (1987)

    Google Scholar 

  27. Mayers, D.: Unconditional secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)

    Article  ADS  Google Scholar 

  28. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410 (1997)

    Article  ADS  Google Scholar 

  29. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80, 065002 (2009)

    Article  ADS  Google Scholar 

  31. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561 (2010)

    Article  ADS  Google Scholar 

  32. Lin, J., Tseng, H.Y., Hwang, T.: Intercept–resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2412 (2011)

    Article  ADS  Google Scholar 

  33. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160 (2011)

    Article  ADS  Google Scholar 

  34. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110 (2012)

    Article  ADS  Google Scholar 

  37. Liu, W., Wang, Y.B., Tao, J.Z., Cao, Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51, 69 (2012)

    Article  MATH  Google Scholar 

  38. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57, 583 (2012)

    Article  ADS  MATH  Google Scholar 

  39. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Phys. Rev. Lett. 77(13), 2818–2821 (1996)

    Article  ADS  Google Scholar 

  40. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  41. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  42. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    Article  ADS  Google Scholar 

  43. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)

    Article  ADS  Google Scholar 

  45. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MATH  MathSciNet  Google Scholar 

  46. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  47. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  48. Gao, F., Qin, S.J., Wen, Q.Y.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  49. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  50. Song, T.T., Zhang, J., Gao, F., Wen, Q.Y., Zhu, F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  51. Guo, F.Z., Qin, S.J., Gao, F., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

  52. Lin, S., Gao, F., Guo, F.Z., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Lecture Notes in Computer Science, vol. 4622, pp. 572–590. Springer, Berlin (2007)

    Google Scholar 

  54. Anders, J., Browne, D.E.: Computational power of correlations. Phys. Rev. Lett. 102, 050502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  55. Loukopoulos, K., Browne, D.E.: Secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 81, 062336 (2010)

    Article  ADS  Google Scholar 

  56. Li, Y.B., Wen, Q.Y., Qin, S.J.: Comment on secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 84, 016301 (2011)

    Article  ADS  Google Scholar 

  57. Yang, Y.G., Zhou, Z., Teng, Y.W., Wen, Q.Y.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61, 773 (2011)

    Article  ADS  Google Scholar 

  58. Li, Y.B., Wen, Q.Y., Qin, S.J.: Improved secure multiparty computation with a dishonest majority via quantum means. Int. J. Theor. Phys. 52, 199 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewer for helpful comments. This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061, 61202317, and 61103210), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant Nos. 2012RC0612, 2011YB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YB., Wang, TY., Chen, HY. et al. Fault-Tolerate Quantum Private Comparison Based on GHZ States and ECC. Int J Theor Phys 52, 2818–2825 (2013). https://doi.org/10.1007/s10773-013-1573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1573-8

Keywords

Navigation