Skip to main content
Log in

Maximally Entangled States of a Two-Qubit System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman, R.P.: Int. J. Theor. Phys. 26(21), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: In: Proc. 35th Ann. Symp., Found of Computer Science, pp. 20–22. IEEE Comput. Soc., Los Alamitos (1994)

    Google Scholar 

  3. Grover, L.K.: In: Proc. 28th Ann. ACM. Symp. on Theory of Computing, pp. 212–221. ACM, Philadelphia (1996)

    Google Scholar 

  4. Simon, D.: SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ezkov, A., Nifanava, A., Ventura, D.: Inf. Sci. 128, 271–293 (2000)

    Article  Google Scholar 

  6. Li, S.S., Nie, Y.Y., Hong, Z.H., Yi, X.J., Huang, Y.B.: Commun. Theor. Phys. 50, 633–640 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Huang, Y.B., Li, S.S., Nie, Y.Y.: Int. J. Theor. Phys. 48, 95–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, S.S.: Int. J. Theor. Phys. 51, 724–730 (2012)

    Article  MATH  Google Scholar 

  9. Wang, Z.S., Wu, C., Feng, X.L., Kwek, L.C., Lai, C.H., Oh, C.H., Vedral, V.: Phys. Rev. A 76, 044303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Wang, Z.S.: Phys. Rev. A 79, 024304 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 84, 4729–4732 (2000)

    Article  ADS  Google Scholar 

  12. Naik, D.S., Peterson, C.G., White, A.G., Burglund, A.J., Kwiat, P.G.: Phys. Rev. Lett. 84, 4733–4736 (2000)

    Article  ADS  Google Scholar 

  13. Tittel, W., Bendel, J., Zbinden, H., Gisin, N.: Phys. Rev. Lett. 84, 4737–4740 (2000)

    Article  ADS  Google Scholar 

  14. Tan, H.T., Zhang, W.M., Li, G.: Phys. Rev. A 83, 032102 (2011)

    Article  ADS  Google Scholar 

  15. Smirne, A., Breuer, H.P., Piilo, J., Vacchini, B.: Phys. Rev. A 84, 062114 (2010)

    Article  ADS  Google Scholar 

  16. Benenti, G., Casati, G.: Phys. Rev. E 79, 025201R (2009)

    Article  ADS  Google Scholar 

  17. Hill, S., Wooters, W.K.: Phys. Rev. Lett. 78(26), 5022–5025 (1997)

    Article  ADS  Google Scholar 

  18. Wooters, W.K.: Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  Google Scholar 

  19. Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Millburn, G.J.: Phys. Rev. A 64(4), 042315 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  20. Coffman, V., Kundu, J., Wooters, W.K.: Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  21. Glaser, U., Buttner, H., Fehske, H.: Phys. Rev. A 68, 032318 (2003)

    Article  ADS  Google Scholar 

  22. Facchi, P., Pascozio, S.: J. Phys. A 41, 493001 (2008)

    Article  MathSciNet  Google Scholar 

  23. Paz-Silva, A.G., Rezakhani, A.T., Dominy, J.M., Lidar, D.A.: Phys. Rev. Lett. 108, 080501 (2012)

    Article  ADS  Google Scholar 

  24. O’Connor, K.M., Wooters, W.K.: Phys. Rev. A 63(5), 052302 (2001)

    Article  ADS  Google Scholar 

  25. Arnesey, M.C., Bose, A., Vederal, V.: Phys. Rev. Lett. 87(1), 017901 (2001)

    Article  ADS  Google Scholar 

  26. Milman, P., Mosseri, R.: Phys. Rev. Lett. 90, 230403 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. Ming, W.L., Tang, Z.L., Liao, C.J.: Phys. Rev. A 69, 064301 (2004)

    Article  ADS  Google Scholar 

  28. Wang, X., Fu, H., Solomon, A.I.: J. Phys. A 34(50), 11307 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Neelay, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.: Nature 467(7315), 570 (2010)

    Article  ADS  Google Scholar 

  30. Kamta, G.L., Starace, A.F.: Phys. Rev. Lett. 88(10), 107901 (2002)

    Article  ADS  Google Scholar 

  31. Milman, P.: Phys. Rev. A 73, 062118 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. Souza, C.E.R., Huguenin, J.A.O., Milman, P., Khoury, A.Z.: Phys. Rev. Lett. 99, 160401 (2007)

    Article  ADS  Google Scholar 

  33. Du, J., Zhu, J., Shi, M., Peng, X., Suter, D.: Phys. Rev. A 76, 042121 (2007)

    Article  ADS  Google Scholar 

  34. Oxman, L.E., Khoury, A.Z.: Phys. Rev. Lett. 106, 240503 (2011)

    Article  ADS  Google Scholar 

  35. Johansson, M., Ericsson, M., Singh, K., Sjoqvist, E., Williamson, M.S.: Phys. Rev. A 85, 032112 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Rajput.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M.P., Rajput, B.S. Maximally Entangled States of a Two-Qubit System. Int J Theor Phys 52, 4237–4255 (2013). https://doi.org/10.1007/s10773-013-1736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1736-7

Keywords

Navigation