Skip to main content
Log in

New Optimal Asymmetric Quantum Codes Derived from Negacyclic Codes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The construction of quantum maximum-distance-separable (MDS) codes have been studied by many researchers for many years. Here, by using negacyclic codes, we construct two families of asymmetric quantum codes. The first family is the asymmetric quantum codes with parameters \([[q^{2}+1,q^{2}+1-2(t+k+1),(2k+2)/(2t+2)]]_{q^{2}}\), where 0≤tk≤(q−1)/2, \(q \equiv1(\operatorname{mod} 4)\), and k, t are positive integers. The second one is the asymmetric quantum codes with parameters \([[(q^{2}+1)/2,(q^{2}+1)/2-2(t+k),(2k+1)/(2t+1)]]_{q^{2}}\), where 1≤tk≤(q−1)/2, and k, t are positive integers. Moreover, the constructed asymmetric quantum codes are optimal and different from the codes available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  ADS  Google Scholar 

  2. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aly, S.A., Klappencker, A., Sarvepalli, P.K.: IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  Google Scholar 

  4. Aly, S.A., Klappenecker, A.: Int. J. Quantum Inf. 7(5), 891–912 (2009)

    Article  MATH  Google Scholar 

  5. Li, R.H., Xu, Z.B.: Phys. Rev. A 82(5), 052316 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Li, R.H., Li, X.L.: IEEE Trans. Inf. Theory 50(6), 1331–1335 (2004)

    Article  Google Scholar 

  7. La Guardia, G.G., Palazzo, R. Jr.: Discrete Math. 310(20), 2935–2945 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. La Guardia, G.G.: IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)

    Article  Google Scholar 

  9. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zang, Z.G.: Opt. Commun. 285(5), 521–526 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zang, Z.G., Yang, W.X.: J. Appl. Phys. 109, 103106 (2011)

    Article  ADS  Google Scholar 

  12. Zang, Z.G., Zhang, Y.J.: Appl. Opt. 51(16), 3424–3430 (2012)

    Article  ADS  Google Scholar 

  13. Zang, Z.G., Zhang, Y.J.: J. Mod. Opt. 59(2), 161–165 (2012)

    Article  ADS  Google Scholar 

  14. Steane, A.M.: Phys. Rev. A 54(6), 4741 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ioffe, L., Mezard, M.: Phys. Rev. A 75(3), 032345 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sarvepalli, P.K., Rotteler, M., Klappenecker, A.: In: Proc. ISIT, pp. 305–309 (2008)

    Google Scholar 

  17. Sarvepalli, P.K., Rotteler, M., Klappenecker, A.: Proc. R. Soc. A 465(2105), 1645–1672 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Aly, S.A.: In: Proc. Computer Engineering and Systems, pp. 157–162 (2008)

    Google Scholar 

  19. Aly, S.A., Ashikhmin, A.: In: IEEE Information Theory Workshop, pp. 1–5 (2010)

    Google Scholar 

  20. Leng, R.G., Ma, Z.: Sci. China, Phys. Mech. Astron. 55(3), 465–469 (2012)

    Article  ADS  Google Scholar 

  21. Wang, L., Feng, K.Q., Ling, S., Xing, C.P.: IEEE Trans. Inf. Theory 56(6), 2938–2945 (2010)

    Article  MathSciNet  Google Scholar 

  22. Ezerman, M.F., Ling, S., Sole, P.: IEEE Trans. Inf. Theory 57(8), 5536–5550 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ezerman, M.F., Ling, S.: Adv. Math. Commun. 5(1), 41–57 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Chee, Y., Jitman, S., Ezerman, M.F.: In: 3rd Int. Castle Meeting on Coding Theory and Applications, pp. 97–102 (2011)

    Google Scholar 

  25. La Guardia, G.G.: Quantum Inf. Comput. 11, 0239 (2011)

    Google Scholar 

  26. La Guardia, G.G.: Quantum Inf. Process. 11(2), 591–604 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. La Guardia, G.G.: Int. J. Quantum Inf. 10(1), 1250005 (2012)

    Article  MathSciNet  Google Scholar 

  28. La Guardia, G.G.: Quantum Inf. Process. (2013). doi:10.1007/s11128-013-0562-4

    Google Scholar 

  29. Qian, J.F., Zhang, L.N.: Mod. Phys. Lett. B 27(2), 1350010 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ezerman, M.F., Jitman, S., Kiah, H.M., Ling, S.: Int. J. Quantum Inf. 11(3), 1350027 (2013)

    Article  MathSciNet  Google Scholar 

  31. Dong, P., Liu, J., Cao, Z.L.: Int. J. Theor. Phys. 52, 1274–1281 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Berlekamp, E.R.: Algebraic Coding Theory. Aegean Park Press, California (1984)

    Google Scholar 

  33. Kai, X.S., Zhu, S.X.: IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  Google Scholar 

  34. Krishna, A., Sarwate, D.V.: IEEE Trans. Inf. Theory 36(4), 880–884 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Guenda, K.: Des. Codes Cryptogr. 62(1), 31–42 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation of China (Grant No. 61003121) and National High Technology Research and Development Program of China (No. 61202084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JZ., Li, JP. & Lin, J. New Optimal Asymmetric Quantum Codes Derived from Negacyclic Codes. Int J Theor Phys 53, 72–79 (2014). https://doi.org/10.1007/s10773-013-1784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1784-z

Keywords

Navigation