Skip to main content
Log in

Same Initial States Attack in Yang et al.’s Quantum Private Comparison Protocol and the Improvement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 31 October 2013

Abstract

In Yang et al.’s literatures (J. Phys. A: Math. 42, 055305, 2009; J. Phys. A: Math. 43, 209801, 2010), a quantum private comparison protocol based on Bell states and hash function is proposed, which aims to securely compare the equality of two participants’ information with the help of a dishonest third party (TP). However, this study will point out their protocol cannot resist a special kind of attack, TP’s same initial states attack, which is presented in this paper. That is, the dishonest TP can disturb the comparison result without being detected through preparing the same initial states. Finally, a simple improvement is given to avoid the attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, December 10–12 1984, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  2. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. 16(4), 910–914 (2007). doi:10.1088/1009-1963/16/4/007

    Article  ADS  Google Scholar 

  3. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999). doi:10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  Google Scholar 

  4. Xu, J., Chen, H.W., Liu, W.J., Liu, Z.H.: Selection of unitary operations in quantum secret sharing without entanglement. Sci. China Inf. Sci. 54(9), 1837–1842 (2011). doi:10.1007/s11432-011-4240-9

    Article  MATH  MathSciNet  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042315 (2003). doi:10.1103/PhysRevA.68.042317

    Article  ADS  Google Scholar 

  6. Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105–4109 (2009). doi:10.1088/1674-1056/18/10/007

    Article  ADS  Google Scholar 

  7. Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. China Inf. Sci. 55(2), 360–367 (2012). doi:10.1007/s11432-011-4371-z

    Article  MathSciNet  Google Scholar 

  8. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997). doi:10.1038/37539

    Article  ADS  Google Scholar 

  9. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998). doi:10.1126/science.282.5389.706

    Article  ADS  Google Scholar 

  10. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009). doi:10.1088/1751-8113/42/5/055305

    ADS  MathSciNet  Google Scholar 

  11. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010). doi:10.1016/j.optcom.2009.11.085

    Article  ADS  Google Scholar 

  12. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012). doi:10.1088/0253-6102/57/4/11

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013). doi:10.1007/s10773-012-1321-5

    Article  MATH  MathSciNet  Google Scholar 

  14. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012). doi:10.1007/s10773-011-0994-5

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012). doi:10.1007/s10773-012-1246-z

    Article  MATH  Google Scholar 

  16. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with chi-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012). doi:10.1007/s10773-011-0878-8

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using X-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012). doi:10.1007/s10773-011-1073-7

    Article  MATH  MathSciNet  Google Scholar 

  18. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012). doi:10.1007/s11128-011-0251-0

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013). doi:10.1007/s11128-012-0439-y

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011). doi:10.1016/j.optcom.2010.09.005

    Article  ADS  Google Scholar 

  21. Zhang, W.W., Li, D., Zhang, K.J., Zuo, H.J.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12(6), 2241–2249 (2013). doi:10.1007/s11128-012-0520-6

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007). doi:10.1103/PhysRevA.75.012333

    Article  ADS  Google Scholar 

  23. Jiang, L., He, G.Q., Nie, D., Xiong, J., Zeng, G.H.: Quantum anonymous voting for continuous variables. Phys. Rev. A 85(4), 042309 (2012). doi:10.1103/PhysRevA.85.042309

    Article  ADS  Google Scholar 

  24. Hogg, T., Harsha, P., Chen, K.Y.: Quantum auctions. Int. J. Quantum Inf. 5(5), 751–780 (2007). doi:10.1142/s0219749907003183

    Article  MATH  Google Scholar 

  25. He, L.B., Huang, L.S., Yang, W., Xu, R., Han, D.Q.: Cryptanalysis and melioration of secure quantum sealed-bid auction with post-confirmation. Quantum Inf. Process. 11(6), 1359–1369 (2012). doi:10.1007/s11128-011-0275-5

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 43(20), 209801 (2010). 42, 055305 (2009). doi: 10.1088/1751-8121/43/20/209801

    ADS  MathSciNet  Google Scholar 

  27. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992). doi:10.1103/PhysRevLett.69.2881

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, WJ., Liu, C., Liu, ZH. et al. Same Initial States Attack in Yang et al.’s Quantum Private Comparison Protocol and the Improvement. Int J Theor Phys 53, 271–276 (2014). https://doi.org/10.1007/s10773-013-1807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1807-9

Keywords

Navigation