Skip to main content
Log in

New Maximally Entangled States and Pattern Classification in Two-Qubit System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Pattern classifications have been performed by employing the method of Grover’s iteration on Bell’s MES and Singh-Rajput MES in two-qubit system and it has been demonstrated that for any pattern classification in a two-qubit system the maximally entangled states of Singh-Rajput eigen basis provide the most suitable choice of search states while in no case any of Bell’s states is suitable for such pattern classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrodinger, E.: Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  2. Shor, P.W.: Proceedings 35 th Annual Symposium, Found of Computer Science, pp. 20–22. Los. Alamitos IEEE Comp. Press (1994)

  3. Grover, L.K.: Proceedings 28 th Annual ACM Symposium on Theory of Computing, pp. 212–221. ACM Press, Philadelphia (1996)

  4. Simon, D.: SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ezkov, A., Nifanava, A., Ventura, D.: Inf. Sci. 128, 271–293 (2000)

    Article  Google Scholar 

  6. Li, S.S., Nie, Y.Y., Hong, Z.H, Yi, X.J., Huang, Y.B.: Comm. Theory Phys. 50, 633–640 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Huang, Y.B., Li, S.S., Nie, Y.Y.: Int. J. Theory Phys. 48, 95–100 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, S.S.: Int. J. Theory Phys. 51, 724–730 (2012)

    Article  MATH  Google Scholar 

  9. Wang, Z.S., Wu, C., Feng, X.L., Kwek, L.C., Lai, C.H., Oh, C.H., Vedral, V.: Phys. Rev. A76, 044303–307 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Wang, Z.S: Phys. Rev. A79, 024304–308 (2009)

    Article  ADS  Google Scholar 

  11. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 84, 4729–4732 (2000)

    Article  ADS  Google Scholar 

  12. Naik, D.S., Peterson, C.G., White, A.G., Burglund, A. J., Kwiat, P.G.: Phys. Rev. Lett. 84, 4733–4736 (2000)

    Article  ADS  Google Scholar 

  13. Tittel, W., Bendel, J., Zbinden, H., Gisin, N.: Phys. Rev. Lett. 84, 4737–4740 (2000)

    Article  ADS  Google Scholar 

  14. Tan, H.T., Zhang, W.M., Li, G.: Phys. Rev. A83, 032102–108 (2011)

    Article  ADS  Google Scholar 

  15. Smirne, A., Breuer, H.P., Piilo, J., Vacchini, B.: Phys. Rev. A84, 062114–119 (2010)

    Article  ADS  Google Scholar 

  16. Benenti, G., Casati, G.: Phys. Rev. E79, 025201R–205R (2009)

    Article  ADS  Google Scholar 

  17. Hill, S., Wooters, W.K.: Phys. Rev. Lett. 78(26), 5022–5025 (1997)

    Article  ADS  Google Scholar 

  18. Wooters, W.K.: Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  Google Scholar 

  19. Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Millburn, G.J.: Phys. Rev. A64(4), 042315–320 (2001)

    Article  ADS  Google Scholar 

  20. Coffman, V., Kundu, J., Wooters, W.K.: Phys. Rev. A61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  21. Glaser, U., Buttner, H., Fehske, H.: Phys. Rev. A68, 032318–326 (2003)

    Article  ADS  Google Scholar 

  22. Facchi, P., Pascozio, S.: J. Phys. A41, 493001 (2008)

    Google Scholar 

  23. Gerardo, A., Paz-Silva, Rezakhani, A.T., Dominy, J.M., Lidar, D.A.: Phys. Rev. Lett. 108, 080501 (2012)

    Article  Google Scholar 

  24. O’Connor, K.M., Wooters, W.K.: Phys. Rev. A63(5), 052302 (2001)

    Article  ADS  Google Scholar 

  25. Arnesey, M.C., Bose, A., Vederal: Phys. Rev. Lett. 87(1), 017901 (2001)

    Article  ADS  Google Scholar 

  26. Milman, P., Mosseri, R.: Phys. Rev. Lett. 90, 230403 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. Ming, W. Li., Tang, Z.L., Liao, C.J.: Phys. Rev. A69, 064301–319 (2004)

    ADS  Google Scholar 

  28. Wang, X., Fu, H., Solomon, A.I.: J. Phys. A34(50), 11307 (2001)

    MathSciNet  ADS  Google Scholar 

  29. Neelay, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.: Nature 467(7315), 570 (2010)

    Article  ADS  Google Scholar 

  30. Kamta, G.L., Starace, A.F.: Phys. Rev. Lett. 88(10), 107901 (2002)

    Article  ADS  Google Scholar 

  31. Singh, M.P., Rajput, B.S.: Int. J. Theory Phys. 52, 4237–4255 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ventura, D.: Proceedings International Joint Conference on Neural Networks, pp. 1565–1576 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Rajput.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.P., Rajput, B.S. New Maximally Entangled States and Pattern Classification in Two-Qubit System. Int J Theor Phys 53, 3226–3238 (2014). https://doi.org/10.1007/s10773-014-2120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2120-y

Keywords

Navigation