Skip to main content
Log in

Security analysis and improvement of the dining cryptographer problem-based anonymous quantum communication via non-maximally entanglement state analysis

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, two novel anonymous quantum communication (AQC) protocols (Shi et al. in Int. J. Theor. Phys. 52, 376-384, 2013) are presented, respectively. One is in a public-receiver model, the other is in broadcasting channels. In their paper, the dining cryptographer problem (DCP) and the non-maximally entanglement state analysis (NESA) are applied. And they analyze some attack strategies, including the honest-but-curious and malicious participant attacking ones. Unfortunately, we find that there exist some potential loopholes in security. The identity of anonymous sender in the AQC protocol with a public receiver for three participants can be revealed. And the AQC protocol in broadcasting channels for n participants, which is sensitive to some special attacks, such as participant attacks, is still not so secure as expected. Here we detailedly analyze the security of their proposed protocols and make some improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery, M., Ziman, M., Buzek, V., Bielikova, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349, 75 (2006)

    Article  ADS  MATH  Google Scholar 

  2. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 012–333, 75 (2007)

    Google Scholar 

  3. Bonanome, M., Buzek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 022–331, 84 (2011)

    Google Scholar 

  4. Jiang, L., He, G.Q., Nie, D., Xiong, J., Zeng, G.H.: Quantum anonymous voting for continuous variables. Phys. Rev. A 042–309, 85 (2012)

    Google Scholar 

  5. Stajano, F., Anderson, R.J.: The cocaine auction protocol: On the power of anonymous broadcast. In Information Hiding, 434–447 (1999)

  6. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun 282, 1939 (2009)

    Article  ADS  Google Scholar 

  7. Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun 282, 41–67 (2009)

    Google Scholar 

  8. Qin, S.J., Wen, Q.Y., Guo, F.Z., Zhu, F.C.: Cryptanalysis and improvement of a DSQC using four-particle entangled state. Opt. Commun 282, 40–17 (2009)

    Google Scholar 

  9. Zhao, Z.W., Naseri, M., Zheng, Y.Q.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun 283, 31–94 (2010)

    Google Scholar 

  10. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24 (2), 84–88 (1981)

    Article  Google Scholar 

  11. Boykin, P.: Information security and quantum mechanics: security of quantum protocols. Ph.D. thesis. University of California, Los Angeles (2002)

    Google Scholar 

  12. Christandl, M., Wehner, S.: Quantum anonymous transmissions Asiacrypt 2005, pp 217–235. Springer, Berlin (2005)

  13. Bouda, J., Šprojcar, J.: Anonymous transmission of quantum information The First International Conference on Quantum, Nano, and Micro Technologies, pp 12–17. IEEE Press, New York (2007)

  14. Brassard, G., Broadbent, A., Fitzsimons, J.: Anonymous quantum communication Asiacrypt 2007, pp 460–473. Springer, Berlin (2007)

  15. Bouda, J.: Šprojcar, J.: quantum communication between anonymous sender and anonymous receiver in the presence of strong adversary. Int. J. Quant. Inf. 9, 651–663 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Quantum communications with an anonymous receiver. Sci. China. Phys. Mech. Astron 53 (12), 2227 (2010)

    Article  ADS  Google Scholar 

  17. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Economical quantum anonymous transmissions. J. Phys. B: At. Mol. Opt. Phys. 43245501 (2010)

  18. Shi, R.H., Su, Q., Guo, Y.: Huang, D.Z. Int. J. Theor. Phys 52, 376–384 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shimizu, K., Tamaki, K., Fukasaka, H.: Two-way protocols for quantum cryptography with a nonmaximally enatangled qubit pair. Phys. Rev. A 022323, 80 (2009)

    MathSciNet  Google Scholar 

  20. Qin, S.J., Gao, F., Guo, F.Z., Wen, Q.Y.: Comment on Two-way protocols for quantum cryptography with a nonmaximally enatangled qubit pair. Phys. Rev. A 036–301, 82 (2010)

    MathSciNet  Google Scholar 

  21. Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Analyzing and revision a two-way protocols for quantum cryptography with a nonmaximally enatangled qubit pair. Int. J. Quant. Inf 9, 1329–1339 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chaum. D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryptology 1, 65–75 (1988)

    Article  MathSciNet  Google Scholar 

  23. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on Experimental Demonstration of a Quantum Protocol for Byzantine Agreement and Liar Detection. Phys. Rev. Lett 208901, 101 (2008)

    Google Scholar 

  24. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on Quantum key distribution without alternative measurements. [Phys. Rev. A 61, 052312 (2000)]. Phys. Rev. A 036301, 63 (2001)

    Google Scholar 

  25. Gao, F., Qin, S., Wen, Q., Zhu, F.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput 7, 329–334 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Gao, F., Qin, S., Guo, F., Wen, Q.: Dense-coding attack on three-party quantum key distribution Pprotocols. IEEE J. Quantum Electron 47, 630–635 (2011)

    Article  ADS  Google Scholar 

  27. Hao, L., Li, J., Long, G.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron 53, 491 (2010)

    Article  ADS  Google Scholar 

  28. Qin, S.J., Gao, F.Z., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  MATH  Google Scholar 

  29. Gao, F., Wen, Q., Zhu, F.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  30. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 022320, 73 (2006)

    Google Scholar 

  31. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 044302, 72 (2005)

    Google Scholar 

  32. Cai, Q.Y.: The Ping-Pong protocol can be attacked without eavesdropping. Phys. Rev. Lett 109801, 91 (2003)

    Google Scholar 

  33. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 014302, 77 (2008)

    Google Scholar 

  34. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: Quantum exam. Phys. Lett. A 350 (2006) 174. Phys. Lett. A 360, 748 (2007)

    Google Scholar 

  35. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett 25, 1561–1563 (2008)

    Article  ADS  Google Scholar 

  36. Gao, F., Qin, S.J, Wen, Q.Y, Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun 283, 192 (2010)

    Article  ADS  Google Scholar 

  37. Wójcik, A.: Eavesdropping on the Ping-Pong quantum communication protocol. Phys. Rev. Lett 90, 157–901 (2003)

    Google Scholar 

  38. Wójcik, A.: Comment on quantum dense key distribution. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  39. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-dušek protocol. Quantum Inf.Comput 7, 329 (2007)

    MATH  MathSciNet  Google Scholar 

  40. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Bužek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062–324 (2007)

    Article  Google Scholar 

  41. Lin, S., Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett 101, 208901 (2008)

    Article  ADS  Google Scholar 

  43. Gao, F., Qin, S.J., Wen, Q.Y.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun 283, 192 (2010)

    Article  ADS  Google Scholar 

  44. Song, T.T., Zhang, J., Gao, F.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  45. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  46. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  47. Chen, Z.B., Chen, Y.A., Schmiedmayer, J., Pan, J. W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 022–329, 76 (2007)

    Google Scholar 

  48. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun 283, 15–61 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061), Beijing Natural Science Foundation (Grant No. 4122054), Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-le Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ql., Zhang, Kj. Security analysis and improvement of the dining cryptographer problem-based anonymous quantum communication via non-maximally entanglement state analysis. Int J Theor Phys 54, 106–115 (2015). https://doi.org/10.1007/s10773-014-2206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2206-6

Keywords

Navigation